(2013•成都一模)已知拋物線y=-
1
2
x2+bx+4
與x軸和y軸的正半軸分別交于點A和B,已知A點坐標為(4,0).
(1)求拋物線的解析式.
(2)如圖,連接AB,M為AB的中點,∠PMQ在AB的同側以M為中心旋轉,且∠PMQ=45°,MP交y軸于點C,MQ交x軸于點D.設AD的長為m(m>0),BC的長為n,求n和m之間的函數(shù)關系式.
(3)若拋物線y=-
1
2
x2+bx+4
上有一點F(-k-1,-k2+1),當m,n為何值時,∠PMQ的邊過點F?
分析:(1)將點(4,0)代入拋物線解析式可求出b的值,繼而得出拋物線的解析式;
(2)先求出AB、BM的長度,通過證明∠BCM=∠AMD,判斷△BCM∽△AMD,利用對應邊成比例可求出n和m之間的函數(shù)關系式;
(3)將點F的坐標代入拋物線解析式求出k的值,分別討論MP過點F,和MQ過點F的情況,分別得出m、n的值即可.
解答:解:(1)將點A(4,0)代入拋物線解析式可得:0=-
1
2
×42+4b+4,
解得:b=1,
故拋物線解析式為y=-
1
2
x2+x+4;

(2)拋物線y=-=-
1
2
x2+x+4與x軸的交點為A(4,0),與y軸的交點為B(0,4),
則AB=4
2
,AM=BM=2
2
,
在∠PMQ繞點M在AB同側旋轉過程中,∠MBC=∠DAM=∠PMQ=45°,
在△BCM中,∠BMC+∠BCM+∠MBC=180°,即∠BMC+∠BCM=135°,
在直線AB上,∠BMC+∠PMQ+∠AMD=180°,即∠BMC+∠AMD=135°,
則∠BCM=∠AMD,
故△BCM∽△AMD,
BC
AM
=
BM
AD
,即
n
2
2
=
2
2
m
,n=
8
m

故n與m之間的函數(shù)關系式為n=
8
m
(m>0).

(3)∵F(-k-1,-k2+1)在y=-
1
2
x2+x+4上,
∴-
1
2
(-k-1)2+(-k-1)+4=-k2+1,
化簡得,k2-4k+3=0,
解得:k1=1,k2=3,
即F1(-2,0)或F2(-4,-8),
①MF過點M(2,2)和F1(-2,0),設MF為y=kx+b,
2k+b=2
-2k+b=0

解得:
k=
5
3
b=-
4
3
,
故直線MF的解析式為y=
5
3
x-
4
3
,
直線MF與x軸的交點為(-2,0),與y軸交點為(0,1),
若MP過點F(-2,0),則n=4-1=3,m=
8
3
,
若MQ過點F(-2,0),則m=4-(-2)=6,n=
4
3
,
②MF過點M(2,2)或點F1(-4,-8),設MF為y=kx+b,
2k+b=2
-4k+b=-8
,
解得:
k=
5
3
b=-
4
3
,
故直線MF的解析式為y=
5
3
x-
4
3

直線MF與x軸的交點為(
4
5
,0),與y軸交點為(0,-
4
3
),
若若MP過點F(-4,-8),則n=4-(-
4
3
)=
16
3
,m=
3
2

若MQ過點F(-4,-8),則m=4-
4
5
=
16
5
,n=
5
2
,
故當
m1=
8
3
n1=3
m2=6
n2=
4
3
,
m3=
3
2
n3=
16
3
m4=
16
5
n4=
5
2
時∠PMQ的邊過點F.
點評:本題考查了二次函數(shù)的綜合題,涉及了待定系數(shù)法求函數(shù)解析式、一次函數(shù)圖象上點的坐標特征的問題,同學們注意培養(yǎng)自己解決綜合題的能力,將所學知識融會貫通.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•成都一模)如圖,AB是⊙O的直徑,點D、T是圓上的兩點,且AT平分∠BAD,過點T作AD延長線的垂線PQ,垂足為C.若⊙O的半徑為2,TC=
3
,則圖中陰影部分的面積是
9
3
-4π
6
9
3
-4π
6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•成都一模)為了實施教育均衡化,成都市決定采用市、區(qū)兩級財政部門補貼相結合的方式為各級中小學添置多媒體教學設備,針對各個學校添置多媒體所需費用的多少市財政部門實施分類補貼措施如下表,其余費用由區(qū)財政部門補貼.
添置多媒體所需費用(萬元) 補貼百分比
不大于10萬元部分 80%
大于10萬元不大于m萬元部分 50%
大于m萬元部分 20%
其中學校所在的區(qū)不同,m的取值也不相同,但市財政部門將m調控在20至40之間(20≤m≤40).試解決下列問題:
(1)若某學校的多媒體教學設備費用為18萬元,求市、區(qū)兩級財政部門應各自補貼多少;
(2)若某學校的多媒體教學設備費用為x萬元,市財政部門補貼y萬元,試分類列出y關于x的函數(shù)式;
(3)若某學校的多媒體教學設備費用為30萬元,市財政部門補貼y萬元的取值范圍為12≤y≤24,試求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•成都一模)二次函數(shù)y=ax2+bx+c的值恒為正,則a,b,c應滿足( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•成都一模)已知P1(-2,y1),P2(-1,y2),P3(2,y3)是反比例函數(shù)y=
2
x
的圖象上的三點,則y1,y2,y3的大小關系是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•成都一模)如圖,以AB為直徑的⊙O是△ADC的外接圓,過點O作PO⊥AB,交AC于點E,PC的延長線交AB的延長線于點F,∠PEC=∠PCE.若△ADC是邊長為1的等邊三角形,則PC的長=
1
3
1
3

查看答案和解析>>

同步練習冊答案