【題目】定義:若,且,則我們稱是的差余角.例如:若,則的差余角.
(1)如圖1,點(diǎn)在直線上,射線是的角平分線,若是的差余角,求的度數(shù).
(2)如圖2,點(diǎn)在直線上,若是的差余角,那么與有什么數(shù)量關(guān)系.
(3)如圖3,點(diǎn)在直線上,若是的差余角,且與在直線的同側(cè),請(qǐng)你探究是否為定值?若是,請(qǐng)求出定值;若不是,請(qǐng)說明理由.
【答案】(1)30°;(2)+=90°;(3)為定值2,理由見解析
【解析】
(1)根據(jù)差余角的定義,結(jié)合角平分線的性質(zhì)可得的度數(shù);
(2)根據(jù)差余角的定義得到和的關(guān)系,
(3)分當(dāng)OE在OC左側(cè)時(shí),當(dāng)OE在OC右側(cè)時(shí),根據(jù)差余角的定義得到和的關(guān)系,再結(jié)合余角和補(bǔ)角的概念求出的值.
解:(1)如圖,∵是的差余角
∴-=90°,
即=+90°,
又∵是的角平分線,
∴∠BOE=,
則+90°++=180°,
解得=30°;
(2)∵是的差余角,
∴-=90°,
∵=+,=+,
∴-=90°,
∵=180°-,
∴180°--=90°,
∴+=90°;
(3)當(dāng)OE在OC左側(cè)時(shí),
∵是的差余角,
∴-=90°,
∴∠AOE=∠BOE=90°,
則
=
=
=2;
當(dāng)OE在OC右側(cè)時(shí),
過點(diǎn)O作OF⊥AB,
∵是的差余角,
∴=90°+,
又∵=90°+,
∴=,
∴
=
=
=
=
=2.
綜上:為定值2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面直角坐標(biāo)系中,、,現(xiàn)將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到點(diǎn),連接.
(1)求出直線的解析式;
(2)若動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段以每分鐘個(gè)單位的速度運(yùn)動(dòng),過作交軸于,連接.設(shè)運(yùn)動(dòng)時(shí)間為分鐘,當(dāng)四邊形為平行四邊形時(shí),求的值.
(3)為直線上一點(diǎn),在坐標(biāo)平面內(nèi)是否存在一點(diǎn),使得以、、、為頂點(diǎn)的四邊形為菱形,若存在,求出此時(shí)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某地,人們發(fā)現(xiàn)某種蟋蟀1min,所叫次數(shù)x與當(dāng)?shù)販囟萒之間的關(guān)系或?yàn)門=ax+b,下面是蟋蟀所叫次數(shù)與溫度變化情況對(duì)照表:
蟋蟀叫的次數(shù)(x) | … | 84 | 98 | 119 | … |
溫度(℃)T | … | 15 | 17 | 20 | … |
①根據(jù)表中的數(shù)據(jù)確定a、b的值.
②如果蟋蟀1min叫63次,那么該地當(dāng)時(shí)的溫度約為多少攝氏度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,用3根火柴可拼成1個(gè)三角形,5根火柴可拼成2個(gè)三角形,7根火柴可拼成3個(gè)三角形……,按這個(gè)規(guī)律拼,用99根火柴可拼成____個(gè)三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三角形中,,,.點(diǎn)從點(diǎn)出發(fā)以2個(gè)單位長(zhǎng)度/秒的速度沿的方向運(yùn)動(dòng),點(diǎn)從點(diǎn)沿的方向與點(diǎn)同時(shí)出發(fā);當(dāng)點(diǎn)第一次回到點(diǎn)時(shí),點(diǎn),同時(shí)停止運(yùn)動(dòng);用(秒)表示運(yùn)動(dòng)時(shí)間.
(1)當(dāng)為多少時(shí),是的中點(diǎn);
(2)若點(diǎn)的運(yùn)動(dòng)速度是個(gè)單位長(zhǎng)度/秒,是否存在的值,使得;
(3)若點(diǎn)的運(yùn)動(dòng)速度是個(gè)單位長(zhǎng)度/秒,當(dāng)點(diǎn),是邊上的三等分點(diǎn)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是矩形ABCD的中心,E是AB上的點(diǎn),沿CE折疊后,點(diǎn)B恰好與點(diǎn)O重合,若BC=3,則折痕CE的長(zhǎng)為( 。
A. B. C. D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某湖上風(fēng)景區(qū)有兩個(gè)觀望點(diǎn)A,C和兩個(gè)度假村B、D;度假村D在C正西方向,度假村B在C的南偏東方向,度假村B到兩個(gè)觀望點(diǎn)的距離都等于2km.
(1)在圖中標(biāo)出A、B、C、D的位置,并寫出道路CD與CB的夾角.
(2)如果度假村D到C是直公路,長(zhǎng)為1km,D到A是環(huán)湖路,度假村B到兩個(gè)觀望點(diǎn)的總路程等于度假村D到兩個(gè)觀望點(diǎn)的總路程.求出環(huán)湖路的長(zhǎng).
(3)根據(jù)題目中的條件,能夠判定嗎?若能,請(qǐng)寫出判斷過程;若不能,請(qǐng)你添加一個(gè)條件,判定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知DB∥AC,E是AC的中點(diǎn),DB=AE,連結(jié)AD、BE.
(1)求證:四邊形DBCE是平行四邊形;
(2)若要使四邊形ADBE是矩形,則△ABC應(yīng)滿足什么條件?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長(zhǎng)為的正方形的邊長(zhǎng)增加,得到一個(gè)邊長(zhǎng)為的正方形.在圖1的基礎(chǔ)上,某同學(xué)設(shè)計(jì)了一個(gè)解釋驗(yàn)證的方案(詳見方案1)
方案1.如圖2,用兩種不同的方式表示邊長(zhǎng)為的正方形的面積.
方式1:
方式2:
因此,
(1)請(qǐng)模仿方案1,在圖1的基礎(chǔ)上再設(shè)計(jì)一種方案,用以解釋驗(yàn)證;
(2)如圖3,在邊長(zhǎng)為的正方形紙片上剪掉邊長(zhǎng)為的正方形,請(qǐng)?jiān)诖嘶A(chǔ)上再設(shè)計(jì)一個(gè)方案用以解釋驗(yàn)證.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com