應用(a+b)(a﹣b)=a2﹣b2的公式計算(x+2y﹣1)(x﹣2y+1),則下列變形正確的是
[     ]
A.[x﹣(2y+1)]2
B.[x+(2y+1)]2
C.[x﹣(2y﹣1)][x+(2y﹣1)]
D.[(x﹣2y)+1][(x﹣2y)﹣1]
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

14、納米是長度單位,納米技術已廣泛應用于各個領域.已知1納米=0.000 000 001米,一個氫原子的直徑大約是0.1納米,用科學記數(shù)法表示一個氫原子的直徑約為
1.0×10-10
米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

類比學習:
我們已經(jīng)知道,頂點在圓上,且角的兩邊都和圓相交的角叫做圓周角,如圖1,∠APB就是圓周角,弧AB是∠APB所夾的。
類似的,我們可以把頂點在圓外,且角的兩邊都和圓相交的角叫做圓外角,如圖2,∠APB就是圓外角,弧AB和弧CD是∠APB所夾的弧,
新知探索:
圖(2)中,弧AB和弧CD度數(shù)分別為80°和30°,∠APB=
25
25
°,
歸納總結:
(1)圓周角的度數(shù)等于它所夾的弧的度數(shù)的一半;
(2)圓外角的度數(shù)等于
所夾兩弧的度數(shù)差的一半
所夾兩弧的度數(shù)差的一半

新知應用:
直線y=-x+m與直線y=-
3
3
x+2相交于y軸上的點C,與x軸分別交于點A、B.經(jīng)過A、B、C三點作⊙E,點P是第一象限內⊙E外的一動點,且點P與圓心E在直線AC的同一側,直線PA、PC分別交⊙E于點M、N,
設∠APC=θ.
①求A點坐標;         ②求⊙E的直徑;
③連接MN,求線段MN的長度(可用含θ的三角函數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•吉林)如圖①,在平面直角坐標系中,點P(0,m2)(m>0)在y軸正半軸上,過點P作平行于x軸的直線,分別交拋物線C1:y=
1
4
x2于點A、B,交拋物線C2:y=
1
9
x2于點C、D.原點O關于直線AB的對稱點為點Q,分別連接OA,OB,QC和QD.
【猜想與證明】
填表:
m 1 2 3
AB
CD
      
     
由上表猜想:對任意m(m>0)均有
AB
CD
=
2
3
2
3
.請證明你的猜想.
【探究與應用】
(1)利用上面的結論,可得△AOB與△CQD面積比為
2
3
2
3

(2)當△AOB和△CQD中有一個是等腰直角三角形時,求△CQD與△AOB面積之差;
【聯(lián)想與拓展】
如圖②過點A作y軸的平行線交拋物線C2于點E,過點D作y軸的平行線交拋物線C1于點F.在y軸上任取一點M,連接MA、ME、MD和MF,則△MAE與△MDF面積的比值為
8
27
8
27

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

現(xiàn)有如圖1的8張大小形狀相同的直角三角形紙片,三邊長分別是a、b、c.用其中4張紙片拼成如圖2的大正方形(空白部分是邊長分別為a和b的正方形);用另外4張紙片拼成如圖3的大正方形(中間的空白部分是邊長為c的正方形).

(一)觀察:
從整體看,圖2和圖3的大正方形的面積都可以表示為(a+b)2,結論①依據(jù)整個圖形的面積等于各部分面積的和.
圖2中的大正方形的面積又可以用含字母a、b的代數(shù)式表示為:
a2+b2+2ab
a2+b2+2ab
,結論②
圖3中的大正方形的面積又可以用含字母a、b、c的代數(shù)式表示為:
c2+2ab
c2+2ab
,結論③
(二)思考:
結合結論①和結論②,可以得到一個等式
(a+b)2=a2+b2+2ab
(a+b)2=a2+b2+2ab

結合結論②和結論③,可以得到一個等式
a2+b2=c2
a2+b2=c2
;
(三)應用:
請你運用(二)中得到的結論任意選擇下列兩個問題中的一個解答:
(1)求1.462+2×1.46×2.54+2.542的值;
(2)若分別以直角三角形三邊為直徑,向外作半圓(如圖4),三個半圓的面積分別記作S1、S2、S3,且S1+S2+S3=20,求S2的值.
(四)延伸(本題作為附加題,做對加2分)
若分別以直角三角形三邊為直徑,向上作三個半圓(如圖5),直角邊a=5,b=12,斜邊c=13,則表示圖中陰影部分面積和的數(shù)值是:
A
A
  A.有理數(shù)     B.無理數(shù)     C.無法判斷
請作出選擇,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

操作探究:
數(shù)學研究課上,老師帶領大家探究《折紙中的數(shù)學問題》時,出示如圖1所示的長方形紙條ABCD,其中AD=BC=1,AB=CD=5.然后在紙條上任意畫一條截線段MN,將紙片沿MN折疊,MB與DN交于點K,得到△MNK.如圖2所示:

探究:
(1)若∠1=70°,∠MKN=
40
40
°;
(2)改變折痕MN位置,△MNK始終是
等腰
等腰
 三角形,請說明理由;
應用:
(3)愛動腦筋的小明在研究△MNK的面積時,發(fā)現(xiàn)KN邊上的高始終是個不變的值.根據(jù)這一發(fā)現(xiàn),他很快研究出△KMN的面積最小值為
12
,此時∠1的大小可以為
45°或135
45°或135
°
(4)小明繼續(xù)動手操作,發(fā)現(xiàn)了△MNK面積的最大值.請你求出這個最大值.

查看答案和解析>>

同步練習冊答案