(2013•東營)已知⊙O1的半徑r1=2,⊙O2的半徑r2是方程
3
x
=
2
x-1
的根,⊙O1與⊙O2的圓心距為1,那么兩圓的位置關(guān)系為( 。
分析:首先解分式方程求得⊙O2的半徑r2,然后根據(jù)半徑和圓心距進行判斷兩圓的位置關(guān)系即可.
解答:解:解方程
3
x
=
2
x-1
得:x=3
∵r1=2,⊙O1與⊙O2的圓心距為1,
∴3-2=1
∴兩圓內(nèi)切,
故選B
點評:此題考查了圓與圓的位置關(guān)系與分式方程的解法.注意掌握兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•東營)如圖,已知AB∥CD,AD和BC相交于點O,∠A=50°,∠AOB=105°,則∠C等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•東營)如圖,已知直線l:y=
3
3
x,過點A(0,1)作y軸的垂線交直線l于點B,過點B作直線l的垂線交y軸于點A1;過點A1作y軸的垂線交直線l于點B1,過點B1作直線l的垂線交y軸于點A2;…按此作法繼續(xù)下去,則點A2013的坐標為
(0,42013)或(0,24026
(0,42013)或(0,24026

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•東營)(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.
證明:DE=BD+CE.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•東營)已知拋物線y=ax2+bx+c的頂點A(2,0),與y軸的交點為B(0,-1).
(1)求拋物線的解析式;
(2)在對稱軸右側(cè)的拋物線上找出一點C,使以BC為直徑的圓經(jīng)過拋物線的頂點A.并求出點C的坐標以及此時圓的圓心P點的坐標.
(3)在(2)的基礎(chǔ)上,設(shè)直線x=t(0<t<10)與拋物線交于點N,當(dāng)t為何值時,△BCN的面積最大,并求出最大值.

查看答案和解析>>

同步練習(xí)冊答案