【題目】如圖,在△ABC中,∠ACB= 90°,CD是∠ACB的平分線,CD的垂直平分線分別交AC,CD,BC于點(diǎn)E ,O,F.求證:四邊形CEDF是正方形.
【答案】見解析.
【解析】
先根據(jù)垂直平分線的性質(zhì)得出EC= ED.FC= FD,由CD平分∠ACB=90°,
得出∠ACD=∠BCD=45°,故可得出ED=EC=CF= FD,得出四邊形CEDF為菱形,再根據(jù)有一個(gè)直角的菱形是正方形即可證明四邊形CEDF是正方形.
因?yàn)?/span>CD的垂直平分線分別交AC、CD、BC于點(diǎn)E、O、F.
所以EC= ED.FC= FD.
因?yàn)椤?/span>ACB=90°,CD平分∠ACB.
所以∠ACD=∠BCD=45°.
又因?yàn)?/span>CD⊥EF.所以CE=CF.
所以ED=EC=CF= FD,所以四邊形CEDF為菱形,
因?yàn)椤?/span>ACB=90°.所以四邊形CEDF為正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)P為四邊形ABCD所在平面上的點(diǎn),如果∠PAD=∠PBC,則稱點(diǎn)P為四邊形ABCD關(guān)于A、B的等角點(diǎn),以點(diǎn)C為坐標(biāo)原點(diǎn),BC所在直線為軸建立平面直角坐標(biāo)系,點(diǎn)B的橫坐標(biāo)為﹣6.
(1)如圖2,若A、D兩點(diǎn)的坐標(biāo)分別為A(﹣6,4)、D(0,4),點(diǎn)P在DC邊上,且點(diǎn)P為四邊形ABCD關(guān)于A、B的等角點(diǎn),則點(diǎn)P的坐標(biāo)為 _________ ;
(2)如圖3,若A、D兩點(diǎn)的坐標(biāo)分別為A(﹣2,4)、D(0,4).
①若P在DC邊上時(shí),則四邊形ABCD關(guān)于A、B的等角點(diǎn)P的坐標(biāo)為 _________ ;
②在①的條件下,將PB沿軸向右平移個(gè)單位長度(0<<6)得到線段P′B′,連接P′D,B′D,試用含的式子表示P′D2+B′D2,并求出使P′D2+B′D2取得最小值時(shí)點(diǎn)P′的坐標(biāo);
③如圖4,若點(diǎn)P為四邊形ABCD關(guān)于A、B的等角點(diǎn),且點(diǎn)P坐標(biāo)為(1, ),求的值;
④以四邊形ABCD的一邊為邊畫四邊形,所畫的四邊形與四邊形ABCD有公共部分,若在所畫的四邊形內(nèi)存在一點(diǎn)P,使點(diǎn)P分別是各相鄰兩頂點(diǎn)的等角點(diǎn),且四對(duì)等角都相等,請(qǐng)直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知下列有理數(shù):﹣(﹣3)、﹣4、0、+5、﹣
(1)這些有理數(shù)中,整數(shù)有 個(gè),非負(fù)數(shù)有 個(gè).
(2)畫數(shù)軸,并在數(shù)軸上表示這些有理數(shù).
(3)把這些有理數(shù)用“<“號(hào)連接起來: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(﹣2,4),過點(diǎn)A作AB⊥y軸,垂足為B,連結(jié)OA.
(1)求△OAB的面積;
(2)若拋物線y=﹣x2﹣2x+c經(jīng)過點(diǎn)A,求c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化,開始上課時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實(shí)驗(yàn)分析可知,學(xué)生的注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):
(1)開始上課后第五分鐘時(shí)與第三十分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?
(2)一道數(shù)學(xué)競賽題,需要講16分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達(dá)到36,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊的放在一個(gè)長為 ,寬為的長方形內(nèi),該長方形內(nèi)部未被卡片覆蓋的部分用陰影表示.
(1)能否用只含的式子表示出圖②中兩塊陰影部分的周長和?_____(填“能”或“不能”);(2)若能,請(qǐng)你用只含的式子表示出中兩塊陰影部分的周長和;若不能,請(qǐng)說明理由_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)8+(-)-5-(-0.25); (2)|-|÷(-)×(-4)2.
(3)(-+)×(-30); (4)(-1)3-(1-)÷3×[2-(-3)2].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=20,
(1)寫出數(shù)軸上點(diǎn)B表示的數(shù) ;
(2)|5﹣3|表示5與3之差的絕對(duì)值,實(shí)際上也可理解為5與3兩數(shù)在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離.如|x﹣3|的幾何意義是數(shù)軸上表示有理數(shù)x的點(diǎn)與表示有理數(shù)3的點(diǎn)之間的距離.試探索:
①:若|x﹣8|=2,則x= .
②:|x+12|+|x﹣8|的最小值為 .
(3)動(dòng)點(diǎn)P從O點(diǎn)出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.求當(dāng)t為多少秒時(shí)?A,P兩點(diǎn)之間的距離為2;
(4)動(dòng)點(diǎn)P,Q分別從O,B兩點(diǎn),同時(shí)出發(fā),點(diǎn)P以每秒5個(gè)單位長度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),Q點(diǎn)以P點(diǎn)速度的兩倍,沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.問當(dāng)t為多少秒時(shí)?P,Q之間的距離為4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 一個(gè)游戲中獎(jiǎng)的概率是,則做100次這樣的游戲一定會(huì)中獎(jiǎng)
B. 為了了解全國中學(xué)生的心理健康狀況,應(yīng)采用普查的方式
C. 一組數(shù)據(jù)0,1,2,1,1的眾數(shù)和中位數(shù)都是1
D. 若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com