【題目】如圖1,在平面直角坐標(biāo)系中,直線y=-x+1與拋物線y=ax2+bx+c(a≠0)相交于點(diǎn)A(1,0)和點(diǎn)D(-4,5),并與y軸交于點(diǎn)C,拋物線的對稱軸為直線x=-1,且拋物線與x軸交于另一點(diǎn)B.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)E是直線下方拋物線上的一個動點(diǎn),求出△ACE面積的最大值;
(3)如圖2,若點(diǎn)M是直線x=-1的一點(diǎn),點(diǎn)N在拋物線上,以點(diǎn)A,D,M,N為頂點(diǎn)的四邊形能否成為平行四邊形?若能,請直接寫出點(diǎn)M的坐標(biāo);若不能,請說明理由.
【答案】(1)y=x2+2x-3;(2)△ACE的面積的最大值為;(3)點(diǎn)M的坐標(biāo)為(-1,26)或(-1,16)或(-1,8).
【解析】
(1)先利用拋物線的對稱性確定出點(diǎn)B的坐標(biāo),然后設(shè)拋物線的解析式為y=a(x+3)(x-1),將點(diǎn)D的坐標(biāo)代入求得a的值即可;
(2)過點(diǎn)E作EF∥y軸,交AD與點(diǎn)F,過點(diǎn)C作CH⊥EF,垂足為H.設(shè)點(diǎn)E(m,m2+2m-3),則F(m,-m+1),則EF=-m2-3m+4,然后依據(jù)△ACE的面積=△EFA的面積-△EFC的面積列出三角形的面積與m的函數(shù)關(guān)系式,然后利用二次函數(shù)的性質(zhì)求得△ACE的最大值即可;
(3)當(dāng)AD為平行四邊形的對角線時.設(shè)點(diǎn)M的坐標(biāo)為(-1,a),點(diǎn)N的坐標(biāo)為(x,y),利用平行四邊形對角線互相平分的性質(zhì)可求得x的值,然后將x=-2代入求得對應(yīng)的y值,然后依據(jù),可求得a的值;當(dāng)AD為平行四邊形的邊時.設(shè)點(diǎn)M的坐標(biāo)為(-1,a).則點(diǎn)N的坐標(biāo)為(-6,a+5)或(4,a-5),將點(diǎn)N的坐標(biāo)代入拋物線的解析式可求得a的值.
(1)∵A(1,0),拋物線的對稱軸為x=-1,
∴B(-3,0).
設(shè)拋物線的解析式為y=a(x+3)(x-1),
將點(diǎn)D的坐標(biāo)代入得:5a=5,解得a=1,
∴拋物線的解析式為y=x2+2x-3.
(2)如圖1所示:過點(diǎn)E作EF∥y軸,交AD與點(diǎn)F,過點(diǎn)C作CH⊥EF,垂足為H.
設(shè)點(diǎn)E(m,m2+2m-3),則F(m,-m+1).
∴EF=-m+1-m2-2m+3=-m2-3m+4
∴△ACE的面積=△EFA的面積-△EFC的面積=EFAG-EFHC=EFOA=-(m+)2+.
∴△ACE的面積的最大值為.
(3)當(dāng)AD為平行四邊形的對角線時.
設(shè)點(diǎn)M的坐標(biāo)為(-1,a),點(diǎn)N的坐標(biāo)為(x,y).
∵平行四邊的對角線互相平分,
∴,.
解得:x=-2,5-a.
將點(diǎn)N的坐標(biāo)代入拋物線的解析式得:5-a=-3,
∴a=8.
∴點(diǎn)M的坐標(biāo)為(/span>-1,8).
當(dāng)AD為平行四邊形的邊時.
設(shè)點(diǎn)M的坐標(biāo)為(-1,a).
∵四邊形MNAD為平行四邊形,
∴點(diǎn)N的坐標(biāo)為(-6,a+5)或(4,a-5).
∵將x=-6,y=a+5代入拋物線的解析式得:a+5=36-12-3,解得:a=16,
∴M(-1,16).
將x=4,y=a-5代入拋物線的解析式得:a-5=16+8-3,解得:a=26,
∴M(-1,26).
綜上所述,當(dāng)點(diǎn)M的坐標(biāo)為(-1,26)或(-1,16)或(-1,8)時,以點(diǎn)A,D,M,N為頂點(diǎn)的四邊形能成為平行四邊形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=-x+4的圖象與x軸和y軸分別相交于A、B兩點(diǎn).動點(diǎn)P從點(diǎn)A出發(fā),在線段AO上以每秒3個單位長度的速度向點(diǎn)O作勻速運(yùn)動,到達(dá)點(diǎn)O停止運(yùn)動,點(diǎn)A關(guān)于點(diǎn)P的對稱點(diǎn)為點(diǎn)Q,以線段PQ為邊向上作正方形PQMN.設(shè)運(yùn)動時間為t秒.
(1)當(dāng)正方形PQMN的邊MN經(jīng)過點(diǎn)B時,t= 秒;
(2)在運(yùn)動過程中,設(shè)正方形PQMN與△AOB重疊部分的面積為S,求S與t的函數(shù)表達(dá)式;
(3)連結(jié)BN,則BN的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初三一次模擬考試后,數(shù)學(xué)老師把一班的數(shù)學(xué)成績制成如圖所示不完整的統(tǒng)計(jì)圖(滿分120分,每組含最低分,不含最高分),并給出如下信息:①第二組頻率是;②第二、三組的頻率和是;③自左至右第三、四、五組的頻數(shù)比為.請你結(jié)合統(tǒng)計(jì)圖解答下列問題:
(1)全班學(xué)生共有______人,第三組的人數(shù)為______人;
(2)如果成績不少于分為優(yōu)秀,那么全年級人中成績達(dá)到優(yōu)秀的大約多少人?
(3)若不少于分的學(xué)生可以獲得學(xué)校頒發(fā)的獎狀,且每班選派兩名代表在學(xué)校新學(xué)期開學(xué)式中領(lǐng)獎,則該班得到分的小強(qiáng)同學(xué)能被選中領(lǐng)獎的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,分別以,為邊向外作等邊和等邊,與交于點(diǎn),則的度數(shù)為:____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉淇同學(xué)利用業(yè)余時間進(jìn)行射擊訓(xùn)練,一共射擊7次,經(jīng)過統(tǒng)計(jì),制成如圖12所示的折線統(tǒng)計(jì)圖.
(1)這組成績的眾數(shù)是 ;
(2)求這組成績的方差;
(3)若嘉淇再射擊一次(成績?yōu)檎麛?shù)環(huán)),得到這8次射擊成績的中位數(shù)恰好就是原來7次成績的中位數(shù),求第8次的射擊成績的最大環(huán)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線與軸交于點(diǎn),以為邊長作等邊,過點(diǎn)作平行于軸,交直線于點(diǎn),以為邊長作等邊,過點(diǎn)作平行于軸,交直線于點(diǎn),以為邊長作等邊,…,則等邊的邊長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于反比例函數(shù),下列說法不正確的是( )
A. 點(diǎn)(-2,-1)在它的圖像上 B. 它的圖像在第一、三象限
C. 當(dāng)時,y隨x的增大而增大 D. 當(dāng)時,y隨x的增大而減小
【答案】C
【解析】試題分析:反比例函數(shù)的性質(zhì):當(dāng)時,圖象在一、三象限,在每一象限,y隨x的增大而減小;當(dāng)時,圖象在二、四象限,在每一象限,y隨x的增大而增大.
A.點(diǎn)在它的圖象上,B.它的圖象在第一、三象限,C.當(dāng)時,隨的增大而減小,均正確,不符合題意;
D.當(dāng)時,隨的增大而減小,故錯誤,本選項(xiàng)符合題意.
考點(diǎn):反比例函數(shù)的性質(zhì)
點(diǎn)評:本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握反比例函數(shù)的性質(zhì),即可完成.
【題型】單選題
【結(jié)束】
8
【題目】由于各地霧霾天氣越來越嚴(yán)重,2018年春節(jié)前夕,安慶市政府號召市民,禁放煙花炮竹.學(xué)校向3000名學(xué)生發(fā)出“減少空氣污染,少放煙花爆竹”倡議書,并圍繞“A類:不放煙花爆竹;B類:少放煙花爆竹;C類:使用電子鞭炮;D類:不會減少煙花爆竹數(shù)量”四個選項(xiàng)進(jìn)行問卷調(diào)查(單選),并將對100名學(xué)生的調(diào)查結(jié)果繪制成統(tǒng)計(jì)圖(如圖所示).根據(jù)抽樣結(jié)果,請估計(jì)全!笆褂秒娮颖夼凇钡膶W(xué)生有( )
A. 900名 B. 1050名 C. 600名 D. 450名
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1,y1),點(diǎn)Q的坐標(biāo)為(x2,y2),且x1≠x2,y1≠y2.若P,Q為某個矩形的兩個頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”,下圖①為點(diǎn)P,Q的“相關(guān)矩形”的示意圖.
已知點(diǎn)A的坐標(biāo)為(1,0),
(1)若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)A,B的“相關(guān)矩形”的面積;
(2)點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(3)若點(diǎn)D的坐標(biāo)為(4,2),將直線y=2x+b平移,當(dāng)它與點(diǎn)A,D的“相關(guān)矩形”沒有公共點(diǎn)時,求出b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com