如圖,在直角梯形ABCD中,AB=2,BC=4,AD=6,M是CD的中點,點P在直角梯形的邊上沿A→B→C→M運動,則△APM的面積y與點P經(jīng)過的路程x之間的函數(shù)關系用圖象表示是
A.B.C.D.
D

試題分析:應用特殊元素法和排他法進行分析:
當點P運動到點B時,如圖1,

作AB邊上的高MH,
∵AB=2,BC=4,AD=6,M是CD的中點,
∴MH是梯形的中位線!郙H=
∴△APM的面積=。
∴當x=2時,y=5。從而可排除A,B選項。
當點P運動到點C時,如圖2,

分別作△ACD和△AMD的AD邊H的高CE和MF,
∵AB=2,BC=4,AD=6,M是CD的中點,
∴MF是△CDE的中位線。∴MF=。
∴△APM的面積
∴當x=6時,y=3。從而可排除C選項。
故選D。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

把直線向上平移m個單位后,與直線的交點在第一象限,則m的取值范圍是
A.1<m<7B.3<m<4 C.m>1D.m<4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

某棵果樹前x年的總產(chǎn)量y與x之間的關系如圖所示,從目前記錄的結(jié)果看,前x年的年平均產(chǎn)量最高,則x的值為【   】
A.3B.5 C.7D.9

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12,動點P從點A出發(fā),沿折線AD-DC-CB以每秒1個單位長的速度運動到點B停止.設運動時間為t秒,y=S△EPF,則y與t的函數(shù)圖象大致是(     )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某校家長委員會計劃在九年級畢業(yè)生中實施“讀萬卷書,行萬里路,了解赤峰,熱愛家鄉(xiāng)”主題活動,決定組織部分畢業(yè)生代表走遍赤峰全市12個旗、縣、區(qū)考察我市創(chuàng)建文明城市成果,遠航旅行社對學生實行九折優(yōu)惠,吉祥旅行社對20人以內(nèi)(含20人)學生旅行團不優(yōu)惠,超過20人超出的部分每人按八折優(yōu)惠.兩家旅行社報價都是2000元/人.服務項目、旅行路線相同.請你幫助家長委員會策劃一下怎樣選擇旅行社更省錢.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

蓮城超市以10元/件的價格調(diào)進一批商品,根據(jù)前期銷售情況,每天銷售量y(件)與該商品定價x(元)是一次函數(shù)關系,如圖所示.

(1)求銷售量y與定價x之間的函數(shù)關系式;
(2)如果超市將該商品的銷售價定為13元/件,不考慮其它因素,求超市每天銷售這種商品所獲得的利潤.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一個大燒杯中裝有一個小燒杯,在小燒杯中放入一個浮子(質(zhì)量非常輕的空心小圓球)后再往小燒杯中注水,水流的速度恒定不變,小燒杯被注滿后水溢出到大燒杯中,浮子始終保持在容器的正中間.用x表示注水時間,用y表示浮子的高度,則用來表示y與x之間關系的選項是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2013年廣東梅州8分)為建設環(huán)境優(yōu)美、文明和諧的新農(nóng)村,某村村委會決定在村道兩旁種植A,B兩種樹木,需要購買這兩種樹苗1000棵.A,B兩種樹苗的相關信息如表:
 
單價(元/棵)
成活率
植樹費(元/棵)
A
20
90%
5
B
30
95%
5
設購買A種樹苗x棵,綠化村道的總費用為y元,解答下列問題:
(1)寫出y(元)與x(棵)之間的函數(shù)關系式;
(2)若這批樹苗種植后成活了925棵,則綠化村道的總費用需要多少元?
(3)若綠化村道的總費用不超過31000元,則最多可購買B種樹苗多少棵?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商場計劃購進A,B兩種新型節(jié)能臺燈共100盞,這兩種臺燈的進價、售價如表所示:
類型 價格
進價(元/盞)
售價(元/盞)
A型
30
45
B型
50
70
(1)若商場預計進貨款為3500元,則這兩種臺燈各購進多少盞?
(2)若商場規(guī)定B型臺燈的進貨數(shù)量不超過A型臺燈數(shù)量的3倍,應怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?

查看答案和解析>>

同步練習冊答案