如圖,四邊形ABCD中,∠A=∠C=90°,BF、DE分別平分∠ABC、∠ADC.判斷DE、BF是否平行,并說明理由.

解:ED∥BF;證明如下:
∵四邊形ABCD中,∠A=∠C=90°,
∴∠ADC+∠ABC=180°,
∵BF、DE分別平分∠ABC、∠ADC,
∴∠ADC+∠ABC=2∠ADE+2∠ABF=180°,
∴∠ADE+∠ABF=90°,
又∵∠A=90°,∠ADE+∠AED=90°,
∴∠AED=∠ABF,
∴ED∥BF(同位角相等,兩直線平行).
分析:由題意可知∠ADC+∠ABC=180°,由BF、DE分別平分∠ABC、∠ADC可知:∠ADE+∠ABF=90°,又因?yàn)椤螦DE+∠AED=90°,所以可得∠AED=∠ABF,即可得ED∥BF.
點(diǎn)評:本題考查了平行線的判定,只有同位角相等、內(nèi)錯(cuò)角相等、同旁內(nèi)角互補(bǔ),才能推出兩被截直線平行.此題還涉及到角平分線的性質(zhì),找到相應(yīng)關(guān)系的角的解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點(diǎn)P,過點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案