【題目】如圖所示,在△ABC中,是邊上的中點(diǎn),,請(qǐng)你添加一個(gè)條件,使成立.你添加的條件是_______________(不再添加輔助線和字母).
【答案】本題答案不唯一,可添加條件:∠B=∠C或AB=AC或∠BED=∠CFD.
【解析】
根據(jù)“全等三角形的判定方法”結(jié)合已知條件分析解答即可.
由題意可知,當(dāng)△BDE≌△CDF時(shí),DE=DF.
∵在△BDE和△CDF中,由題意可知已經(jīng)有DB=DC,∠BDE=∠CDF一邊一角對(duì)應(yīng)相等,
∴(1)當(dāng)添加條件:∠B=∠C時(shí),可由“ASA”證得△BDE≌△CDF,即可得到DE=DF;
(2)當(dāng)添加條件:AB=AC時(shí),可得∠B=∠C,這樣由“ASA”證得△BDE≌△CDF,即可得到DE=DF;
(3)當(dāng)添加條件:∠BED=∠CFD時(shí),可由“AAS”證得△BDE≌△CDF,由此可得DE=DF;
綜上所述,本題答案不唯一,可添加條件:∠B=∠C或AB=AC或∠BED=∠CFD.
故答案為:本題答案不唯一,可添加條件:∠B=∠C或AB=AC或∠BED=∠CFD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD是△ABC的外角∠EAC的平分線,交BC的延長(zhǎng)線于點(diǎn)D,延長(zhǎng)DA交△ABC的外接圓于點(diǎn)F,連接FB,F(xiàn)C.
(1)求證:∠FBC=∠FCB;
(2)已知FAFD=12,若AB是△ABC外接圓的直徑,F(xiàn)A=2,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AB=BC=2 ,E、F分別是AD、CD的中點(diǎn),連接BE、BF、EF.若四邊形ABCD的面積為6,則△BEF的面積為( 。
A.2
B.
C.
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,D、E為⊙O上位于AB異側(cè)的兩點(diǎn),連接BD并延長(zhǎng)至點(diǎn)C,使得CD=BD,連接AC交⊙O于點(diǎn)F,連接AE、DE、DF.
(1)證明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度數(shù);
(3)設(shè)DE交AB于點(diǎn)G,若DF=4,cosB= ,E是 的中點(diǎn),求EGED的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OM是∠AOC的平分線,ON是∠BOC的平分線.
(1)如圖1,當(dāng)∠AOB是直角,∠BOC=60°時(shí),∠MON的度數(shù)是多少?
(2)如圖2,當(dāng)∠AOB=α,∠BOC=60°時(shí),猜想∠MON與α的數(shù)量關(guān)系;
(3)如圖3,當(dāng)∠AOB=α,∠BOC=β時(shí),猜想∠MON與α、β有數(shù)量關(guān)系嗎?如果有,指出結(jié)論并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜經(jīng)營(yíng)戶從蔬菜批發(fā)市場(chǎng)批發(fā)蔬菜進(jìn)行零售,部分蔬菜批發(fā)價(jià)格與零售價(jià)格如表:
蔬菜品種 | 西紅柿 | 青椒 | 西蘭花 | 豆角 |
批發(fā)價(jià)(元/kg) | 3.6 | 5.4 | 8 | 4.8 |
零售價(jià)(元/噸) | 5.4 | 8.4 | 14 | 7.6 |
請(qǐng)解答下列問(wèn)題:
(1)第一天,該經(jīng)營(yíng)戶批發(fā)西紅柿和西蘭花兩種蔬菜共300 kg,用去了1520元錢,這兩種蔬菜當(dāng)天全部售完一共能賺多少元錢?
(2)第二天,該經(jīng)營(yíng)戶用1520元錢仍然批發(fā)西紅柿和西蘭花,要想當(dāng)天全部售完后賺錢數(shù)1050元,則該經(jīng)營(yíng)戶批發(fā)西紅柿多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:可以表示為兩個(gè)互質(zhì)整數(shù)的商的形式的數(shù)稱為有理數(shù),整數(shù)可以看作分母為1的有理數(shù);反之為無(wú)理數(shù).如不能表示為兩個(gè)互質(zhì)的整數(shù)的商,所以幾個(gè)號(hào)無(wú)理數(shù).可以這樣證明:
設(shè),a與b是互質(zhì)的兩個(gè)整數(shù),且b≠0,則2=,所以a=2b.
因?yàn)?/span>b是整數(shù)且不為0,所以a是不為0的偶數(shù).設(shè)a=2n(n是整數(shù)),
所以b=2n,所以b也是偶數(shù),與a與b是互質(zhì)的整數(shù)矛盾,
所以是無(wú)理數(shù).
仔細(xì)閱讀上文,然后請(qǐng)證明:是無(wú)理數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣3x﹣3與x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線y=x2+bx+c經(jīng)過(guò)A,C兩點(diǎn),且與x軸交于另一點(diǎn)B(點(diǎn)B在點(diǎn)A右側(cè)).
(1)求拋物線的解析式及點(diǎn)B坐標(biāo);
(2)若點(diǎn)M是線段BC上一動(dòng)點(diǎn),過(guò)點(diǎn)M的直線EF平行y軸交x軸于點(diǎn)F,交拋物線于點(diǎn)E.求ME長(zhǎng)的最大值;
(3)試探究當(dāng)ME取最大值時(shí),在x軸下方拋物線上是否存在點(diǎn)P,使以M,F(xiàn),B,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com