已知:如圖一次函數(shù)yx+1的圖象與x軸交于點A,與y軸交于點B;二次函數(shù)yx2bxc的圖象與一次函數(shù)yx+1的圖象交于B、C兩點,與x軸交于D、E兩點且D點坐標(biāo)為(1,0)

(1)求二次函數(shù)的解析式;

(2)求四邊形BDEC的面積S;

(3)在x軸上是否存在點P,使得△PBC是以P為直角頂點的直角三角形?若存在,求出所有的點P,若不存在,請說明理由.

解:(1)將B(0,1),D(1,0)的坐標(biāo)代入yx2bxc

得解析式yx2x+1

(2)設(shè)C(x0y0),則有

解得C(4,3).

由圖可知:SSACESABD.又由對稱軸為x可知E(2,0).

SAE·y0AD×OB×4×3-×3×1=

(3)設(shè)符合條件的點P存在,令P(a,0):

當(dāng)P為直角頂點時,如圖:過CCFx軸于F

∵Rt△BOP∽Rt△PFC,∴.即

整理得a2-4a+3=0.解得a=1或a=3

∴所求的點P的坐標(biāo)為(1,0)或(3,0)

綜上所述:滿足條件的點P共有二個

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖一次函數(shù)y=
1
2
x+1的圖象與x軸交于點A,與y軸交于點B;二次函數(shù)y=
1
2
x2+bx+c的圖象與一次函數(shù)y=
1
2
x+1的圖象交于B、C兩點,與x軸交于D、E兩點且D點坐標(biāo)為(1,0).
(1)求二次函數(shù)的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上是否存在點P,使得△PBC是以P為直角頂點的直角三角形?若存在,求出所有的點P,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖一次函數(shù)y=
12
x-3的圖象與x軸、y軸分別交于A、B兩點,過點C(4,0)作AB的垂線交AB于點E,交y軸于點D,求點D、E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年山東省臨沂市實驗中學(xué)中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

已知:如圖一次函數(shù)y=x+1的圖象與x軸交于點A,與y軸交于點B;二次函數(shù)y=x2+bx+c的圖象與一次函數(shù)y=x+1的圖象交于B、C兩點,與x軸交于D、E兩點且D點坐標(biāo)為(1,0).
(1)求二次函數(shù)的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上是否存在點P,使得△PBC是以P為直角頂點的直角三角形?若存在,求出所有的點P,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年湖北省荊州市蘆陵中學(xué)中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

已知:如圖一次函數(shù)y=x+1的圖象與x軸交于點A,與y軸交于點B;二次函數(shù)y=x2+bx+c的圖象與一次函數(shù)y=x+1的圖象交于B、C兩點,與x軸交于D、E兩點且D點坐標(biāo)為(1,0).
(1)求二次函數(shù)的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上是否存在點P,使得△PBC是以P為直角頂點的直角三角形?若存在,求出所有的點P,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年湖北省荊州市中考模擬試題(一)數(shù)學(xué)卷 題型:解答題

(12分)已知:如圖一次函數(shù)yx+1的圖象與x軸交于點A,與y軸交于點B;二次函數(shù)yx2bxc的圖象與一次函數(shù)yx+1的圖象交于B、C兩點,與x軸交于D、E兩點且D點坐標(biāo)為(1,0)

(1)求二次函數(shù)的解析式;

(2)求四邊形BDEC的面積S;

(3)在x軸上是否存在點P,使得△PBC是以P為直角頂點的直角三角形?若存在,求出所有的點P,若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案