一家計(jì)算機(jī)專買店A型計(jì)算器每只進(jìn)價(jià)12元,售價(jià)20元,多買優(yōu)惠:凡是一次買10只以上的,每多買一只,所買的全部計(jì)算器每只就降低0.10元,例如,某人買20只計(jì)算器,于是每只降價(jià)0.10×(20-10)=1(元),因此,所買的全部20只計(jì)算器都按每只19元的價(jià)格購買.但是最低價(jià)為每只16元.
(1)求一次至少買多少只,才能以最低價(jià)購買?
(2)寫出專買店當(dāng)一次銷售x(x>10)只時(shí),所獲利潤y元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)一天,甲買了46只,乙買了50只,店主卻發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,你能用數(shù)學(xué)知識(shí)解釋這一現(xiàn)象嗎?為了不出現(xiàn)這種現(xiàn)象,在其他優(yōu)惠條件不變的情況下,店家應(yīng)把最低價(jià)每只16元至少提高到多少?
【答案】分析:(1)設(shè)一次購買x只,由于凡是一次買10只以上的,每多買一只,所買的全部計(jì)算器每只就降低0.10元,而最低價(jià)為每只16元,因此得到20-0.1(x-10)=16,解方程即可求解;
(2)由于根據(jù)(1)得到x≤50,又一次銷售x(x>10)只,因此得到自變量x的取值范圍,然后根據(jù)已知條件可以得到y(tǒng)與x的函數(shù)關(guān)系式;
(3)首先把函數(shù)變?yōu)閥=-0.1x2+9x=-0.1(x-45)2+202.5,然后可以得到函數(shù)的增減性,再結(jié)合已知條件即可解決問題.
解答:解:(1)設(shè)一次購買x只,
則20-0.1(x-10)=16,
解得x=50.
∴一次至少買50只,才能以最低價(jià)購買;

(2)當(dāng)10<x≤50時(shí),
y=[20-0.1(x-10)-12]x=-0.1x2+9x,
當(dāng)x>50時(shí),y=(16-12)x=4x;

(3)y=-0.1x2+9x=-0.1(x-45)2+202.5,
①當(dāng)10<x≤45時(shí),y隨x的增大而增大,即當(dāng)賣的只數(shù)越多時(shí),利潤更大.
②當(dāng)45<x≤50時(shí),y隨x的增大而減小,即當(dāng)賣的只數(shù)越多時(shí),利潤變小.
且當(dāng)x=46時(shí),y1=202.4,
當(dāng)x=50時(shí),y2=200.
y1>y2
即出現(xiàn)了賣46只賺的錢比賣50只賺的錢多的現(xiàn)象.
當(dāng)x=45時(shí),最低售價(jià)為20-0.1(45-10)=16.5(元).
∴為了不出現(xiàn)這種現(xiàn)象,在其他優(yōu)惠條件不變的情況下,店家應(yīng)把最低價(jià)每只16元至少提高到16.5元.
點(diǎn)評:本題考查了二次函數(shù)的性質(zhì)在實(shí)際生活中的應(yīng)用.最大銷售利潤的問題常利函數(shù)的增減性來解答,我們首先要吃透題意,確定變量,建立函數(shù)模型,然后結(jié)合實(shí)際選擇最優(yōu)方案.其中要注意應(yīng)該在自變量的取值范圍內(nèi)求最大值(或最小值),也就是說二次函數(shù)的最值不一定在x=時(shí)取得.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、一家計(jì)算機(jī)專買店A型計(jì)算器每只進(jìn)價(jià)12元,售價(jià)20元,多買優(yōu)惠:凡是一次買10只以上的,每多買一只,所買的全部計(jì)算器每只就降低0.10元,例如,某人買20只計(jì)算器,于是每只降價(jià)0.10×(20-10)=1(元),因此,所買的全部20只計(jì)算器都按每只19元的價(jià)格購買.但是最低價(jià)為每只16元.
(1)求一次至少買多少只,才能以最低價(jià)購買?
(2)寫出專買店當(dāng)一次銷售x(x>10)只時(shí),所獲利潤y元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)一天,甲買了46只,乙買了50只,店主卻發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,你能用數(shù)學(xué)知識(shí)解釋這一現(xiàn)象嗎?為了不出現(xiàn)這種現(xiàn)象,在其他優(yōu)惠條件不變的情況下,店家應(yīng)把最低價(jià)每只16元至少提高到多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

 (本題滿分12分) 一家計(jì)算機(jī)專買店A型計(jì)算器每只進(jìn)價(jià)12元,售價(jià)20元,多買優(yōu)惠:凡是一次買10只以上的,每多買一只,所買的全部計(jì)算器每只就降低0.10元,例如,某人買20只計(jì)算器,于是每只降價(jià)0.10×(20-10)=1(元),因此,所買的全部20只計(jì)算器都按每只19元的價(jià)格購買.但是最低價(jià)為每只16元.

1.(1)求一次至少買多少只,才能以最低價(jià)購買?

2.(2)寫出專買店當(dāng)一次銷售xx>10)只時(shí),所獲利潤y元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

3.(3)一天,甲買了46只,乙買了50只,店主卻發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,你能用數(shù)學(xué)知識(shí)解釋這一現(xiàn)象嗎?為了不出現(xiàn)這種現(xiàn)象,在其他優(yōu)惠條件不變的情況下,店家應(yīng)把最低價(jià)每只16元至少提高到多少?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)一家計(jì)算機(jī)專買店A型計(jì)算器每只進(jìn)價(jià)12元,售價(jià)20元,多買優(yōu)惠:凡是一次買10只以上的,每多買一只,所買的全部計(jì)算器每只就降低0.10元,例如,某人買20只計(jì)算器,于是每只降價(jià)0.10×(20-10)=1(元),因此,所買的全部20只計(jì)算器都按每只19元的價(jià)格購買.但是最低價(jià)為每只16元.
【小題1】(1)求一次至少買多少只,才能以最低價(jià)購買?
【小題2】(2)寫出專買店當(dāng)一次銷售xx>10)只時(shí),所獲利潤y元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
【小題3】(3)一天,甲買了46只,乙買了50只,店主卻發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,你能用數(shù)學(xué)知識(shí)解釋這一現(xiàn)象嗎?為了不出現(xiàn)這種現(xiàn)象,在其他優(yōu)惠條件不變的情況下,店家應(yīng)把最低價(jià)每只16元至少提高到多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆九年級(jí)第三次模擬考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)一家計(jì)算機(jī)專買店A型計(jì)算器每只進(jìn)價(jià)12元,售價(jià)20元,多買優(yōu)惠:凡是一次買10只以上的,每多買一只,所買的全部計(jì)算器每只就降低0.10元,例如,某人買20只計(jì)算器,于是每只降價(jià)0.10×(20-10)=1(元),因此,所買的全部20只計(jì)算器都按每只19元的價(jià)格購買.但是最低價(jià)為每只16元.
【小題1】(1)求一次至少買多少只,才能以最低價(jià)購買?
【小題2】(2)寫出專買店當(dāng)一次銷售xx>10)只時(shí),所獲利潤y元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
【小題3】(3)一天,甲買了46只,乙買了50只,店主卻發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,你能用數(shù)學(xué)知識(shí)解釋這一現(xiàn)象嗎?為了不出現(xiàn)這種現(xiàn)象,在其他優(yōu)惠條件不變的情況下,店家應(yīng)把最低價(jià)每只16元至少提高到多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年九年級(jí)第三次模擬考試數(shù)學(xué)卷 題型:解答題

 (本題滿分12分) 一家計(jì)算機(jī)專買店A型計(jì)算器每只進(jìn)價(jià)12元,售價(jià)20元,多買優(yōu)惠:凡是一次買10只以上的,每多買一只,所買的全部計(jì)算器每只就降低0.10元,例如,某人買20只計(jì)算器,于是每只降價(jià)0.10×(20-10)=1(元),因此,所買的全部20只計(jì)算器都按每只19元的價(jià)格購買.但是最低價(jià)為每只16元.

1.(1)求一次至少買多少只,才能以最低價(jià)購買?

2.(2)寫出專買店當(dāng)一次銷售xx>10)只時(shí),所獲利潤y元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

3.(3)一天,甲買了46只,乙買了50只,店主卻發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,你能用數(shù)學(xué)知識(shí)解釋這一現(xiàn)象嗎?為了不出現(xiàn)這種現(xiàn)象,在其他優(yōu)惠條件不變的情況下,店家應(yīng)把最低價(jià)每只16元至少提高到多少?

 

查看答案和解析>>

同步練習(xí)冊答案