【題目】如圖所示,直線AB,CD相交于點O,作∠DOE=∠BOD,OF平分∠AOE.
(1)判斷OF與OD的位置關系;
(2)若∠AOC∶∠AOD=1∶5,求∠EOF的度數(shù).
【答案】(1) OF⊥OD,理由見解析;(2) 60°.
【解析】試題分析:(1)根據(jù)角平分線的性質(zhì),可得與的關系,根據(jù)角的和差,可得的度數(shù),可得答案;
(2)根據(jù)補角的性質(zhì), 可得的度數(shù),根據(jù)角的和差,可得的度數(shù),根據(jù)角平分線的性質(zhì),可得答案.
試題解析:
(1)因為OF平分∠AOE,
所以∠AOF=∠EOF=∠AOE.
又因為∠DOE=∠BOD=∠BOE,
所以∠DOE+∠EOF= (∠BOE+∠AOE)= ×180°=90°,
即∠FOD=90°.
所以OF⊥OD.
(2)設∠AOC=x°,
因為∠AOC∶∠AOD=1∶5,
所以∠AOD=5x°.
因為∠AOC+∠AOD=180°,
所以x+5x=180,x=30.
所以∠DOE=∠BOD=∠AOC=30°.
又因為∠FOD=90°,
所以∠EOF=90°-30°=60°.
科目:初中數(shù)學 來源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點C按如圖方式疊放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):
(1)①若∠DCE=45°,則∠ACB的度數(shù)為 ;
②若∠ACB=140°,求∠DCE的度數(shù);
(2)由(1)猜想∠ACB與∠DCE的數(shù)量關系,并說明理由.
(3)當∠ACE<180°且點E在直線AC的上方時,這兩塊三角尺是否存在一組邊互相平行?若存在,請直接寫出∠ACE角度所有可能的值(不必說明理由);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術的廣泛應用,催生了快遞行業(yè)的高速發(fā)展.小明計劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費;超過1千克,超過的部分按每千克15元收費.乙公司表示:按每千克16元收費,另加包裝費3元.設小明快遞物品x千克.
(1)請分別寫出甲、乙兩家快遞公司快遞該物品的費用y(元)與x(千克)之間的函數(shù)關系式;
(2)小明選擇哪家快遞公司更省錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中國的陸地面積約為9600000km2 , 將這個數(shù)用科學記數(shù)法可表示為( )
A.0.96×107km2
B.960×104km2
C.9.6×106km2
D.9.6×105km2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,A、B兩地相距120千米,甲騎自行車以20千米/時的速度由起點A前往終點B,乙騎摩托車以40千米/時的速度由起點B前往終點A.兩人同時出發(fā),各自到達終點后停止.設兩人之間的距離為s(千米),甲行駛的時間為t(小時),則下圖中正確反映s與t之間函數(shù)關系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】( 2017大連)在平面直角坐標系xOy中,線段AB的兩個端點坐標分別為A(﹣1,﹣1),B(1,2),平移線段AB,得到線段A′B′,已知A′的坐標為(3,﹣1),則點B′的坐標為( )
A.(4,2)
B.(5,2)
C.(6,2)
D.(5,3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為4的正方形OABC置于平面直角坐標系中,點P在邊OA上從O向A運動,連接CP交對角線OB于點Q,連接AQ.
(1)求證:△OCQ≌△OAQ;
(2)當點Q的坐標為( , )時,求點P的坐標;
(3)若點P在邊OA上從點O運動到點A后,再繼續(xù)在邊AB上從A運動到點B,在整個過運動過程中,若△OCQ恰為等腰三角形,請直接寫出所有滿足條件的點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com