(2013年四川資陽3分)如圖,拋物線y=ax2+bx+c(a≠0)過點(1,0)和點(0,﹣2),且頂點在第三象限,設(shè)P=a﹣b+c,則P的取值范圍是【   】
A.﹣4<P<0B.﹣4<P<﹣2C.﹣2<P<0D.﹣1<P<0
A。
∵二次函數(shù)的圖象開口向上,∴a>0。
∵對稱軸在y軸的左邊,∴<0!郻>0。
∵圖象與y軸的交點坐標(biāo)是(0,﹣2),過(1,0)點,代入得:a+b﹣2=0。
∴a=2﹣b,b=2﹣a。∴y=ax2+(2﹣a)x﹣2。
把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣4,
∵b>0,∴b=2﹣a>0。∴a<2。
∵a>0,∴0<a<2。∴0<2a<4!喋4<2a﹣4<0,即﹣4<P<0。
故選A。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖(a),拋物線經(jīng)過點A(x1,0),B(x2,0),C(0,-2),其頂點為D.以AB為直徑的⊙M交y軸于點E、F,過點E作⊙M的切線交x軸于點N。∠ONE=30°,

(1)求拋物線的解析式及頂點D的坐標(biāo);
(2)連結(jié)AD、BD,在(1)中的拋物線上是否存在一點P,使得△ABP與△ADB相似?若存在,求出P點的坐標(biāo);若不存在,說明理由;
(3)如圖(b),點Q為上的動點(Q不與E、F重合),連結(jié)AQ交y軸于點H,問:AH·AQ是否為定值?若是,請求出這個定值;若不是,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在坐標(biāo)系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),拋物線的圖象過C點.

(1)求拋物線的解析式;
(2)平移該拋物線的對稱軸所在直線l.當(dāng)l移動到何處時,恰好將△ABC的面積分為相等的兩部分?
(3)點P是拋物線上一動點,是否存在點P,使四邊形PACB為平行四邊形?若存在,求出P點坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線與x軸交于點A,與y軸交于點B,將△AOB繞點O順時針旋轉(zhuǎn)90°后得到△COD.

(1)點C的坐標(biāo)是     ,線段AD的長等于     ;
(2)點M在CD上,且CM=OM,拋物線y=x2+bx+c經(jīng)過點G,M,求拋物線的解析式;
(3)如果點E在y軸上,且位于點C的下方,點F在直線AC上,那么在(2)中的拋物線上是否存在點P,使得以C,E,F(xiàn),P為頂點的四邊形是菱形?若存在,請求出該菱形的周長l;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2013年浙江義烏10分)小明合作學(xué)習(xí)小組在探究旋轉(zhuǎn)、平移變換.如圖△ABC,△DEF均為等腰直角三角形,各頂點坐標(biāo)分別為A(1,1),B(2,2),C(2,1),D(,0),E(, 0),F(xiàn)(,).
(1)他們將△ABC繞C點按順時針方向旋轉(zhuǎn)450得到△A1B1C.請你寫出點A1,B1的坐標(biāo),并判斷A1C和DF的位置關(guān)系;
(2)他們將△ABC繞原點按順時針方向旋轉(zhuǎn)450,發(fā)現(xiàn)旋轉(zhuǎn)后的三角形恰好有兩個頂點落在拋物線上.請你求出符合條件的拋物線解析式;
(3)他們繼續(xù)探究,發(fā)現(xiàn)將△ABC繞某個點旋轉(zhuǎn)45,若旋轉(zhuǎn)后的三角形恰好有兩個頂點落在拋物線上,則可求出旋轉(zhuǎn)后三角形的直角頂點P的坐標(biāo).請你直接寫出點P的所有坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2013年四川眉山11分)如圖,在平面直角坐標(biāo)系中,點A、B在x軸上,點C、D在y軸上,且OB=OC=3,OA=OD=1,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點,直線AD與拋物線交于另一點M.

(1)求這條拋物線的解析式;
(2)P為拋物線上一動點,E為直線AD上一動點,是否存在點P,使以點A、P、E為頂點的三角形為等腰直角三角形?若存在,請求出所有點P的坐標(biāo);若不存在,請說明理由.
(3)請直接寫出將該拋物線沿射線AD方向平移個單位后得到的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點A(0,4),B(2,0).

(1)求直線AB的函數(shù)解析式;
(2)已知點M是線段AB上一動點(不與點A、B重合),以M為頂點的拋物線y=(x﹣m)2+n與線段OA交于點C.
①求線段AC的長;(用含m的式子表示)
②是否存在某一時刻,使得△ACM與△AMO相似?若存在,求出此時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,拋物線與x軸相交于O、B,頂點為A,連接OA.

(1)求點A的坐標(biāo)和∠AOB的度數(shù);
(2)若將拋物線向右平移4個單位,再向下平移2個單位,得到拋物線m,其頂點為點C.連接OC和AC,把△AOC沿OA翻折得到四邊形ACOC′.試判斷其形狀,并說明理由;
(3)在(2)的情況下,判斷點C′是否在拋物線上,請說明理由;
(4)若點P為x軸上的一個動點,試探究在拋物線m上是否存在點Q,使以點O、P、C、Q為頂點的四邊形是平行四邊形,且OC為該四邊形的一條邊?若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于A、B兩點,與y軸交C點,點A的坐標(biāo)為(2,0),點C的坐標(biāo)為(0,3)它的對稱軸是直線

(1)求拋物線的解析式;
(2)M是線段AB上的任意一點,當(dāng)△MBC為等腰三角形時,求M點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案