如圖,點(diǎn)A關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是________.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A在y軸上,點(diǎn)B在x軸上,且OA=OB=1,經(jīng)過原點(diǎn)O的直線l交線段AB于點(diǎn)C,過C作OC的垂線,與直線x=1相交于點(diǎn)P,現(xiàn)將直線L繞O點(diǎn)旋轉(zhuǎn),使交點(diǎn)C從A向B運(yùn)動(dòng),但C點(diǎn)必須在第一象限內(nèi),并記AC的長為t,分析此圖后,對(duì)下列問題作出探究:
(1)當(dāng)△AOC和△BCP全等時(shí),求出t的值;
(2)通過動(dòng)手測量線段OC和CP的長來判斷它們之間的大小關(guān)系并證明你得到的結(jié)論;
(3)①設(shè)點(diǎn)P的坐標(biāo)為(1,b),試寫出b關(guān)于t的函數(shù)關(guān)系式和變量t的取值范圍.
②求出當(dāng)△PBC為等腰三角形時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•吉林)如圖①,在平面直角坐標(biāo)系中,點(diǎn)P(0,m2)(m>0)在y軸正半軸上,過點(diǎn)P作平行于x軸的直線,分別交拋物線C1:y=
1
4
x2于點(diǎn)A、B,交拋物線C2:y=
1
9
x2于點(diǎn)C、D.原點(diǎn)O關(guān)于直線AB的對(duì)稱點(diǎn)為點(diǎn)Q,分別連接OA,OB,QC和QD.
【猜想與證明】
填表:
m 1 2 3
AB
CD
      
     
由上表猜想:對(duì)任意m(m>0)均有
AB
CD
=
2
3
2
3
.請(qǐng)證明你的猜想.
【探究與應(yīng)用】
(1)利用上面的結(jié)論,可得△AOB與△CQD面積比為
2
3
2
3
;
(2)當(dāng)△AOB和△CQD中有一個(gè)是等腰直角三角形時(shí),求△CQD與△AOB面積之差;
【聯(lián)想與拓展】
如圖②過點(diǎn)A作y軸的平行線交拋物線C2于點(diǎn)E,過點(diǎn)D作y軸的平行線交拋物線C1于點(diǎn)F.在y軸上任取一點(diǎn)M,連接MA、ME、MD和MF,則△MAE與△MDF面積的比值為
8
27
8
27

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年吉林省中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖①,在平面直角坐標(biāo)系中,點(diǎn)P(0,m2)(m>0)在y軸正半軸上,過點(diǎn)P作平行于x軸的直線,分別交拋物線C1:y=x2于點(diǎn)A、B,交拋物線C2:y=x2于點(diǎn)C、D.原點(diǎn)O關(guān)于直線AB的對(duì)稱點(diǎn)為點(diǎn)Q,分別連接OA,OB,QC和QD.
【猜想與證明】
填表:
m123
      
     
由上表猜想:對(duì)任意m(m>0)均有=______.請(qǐng)證明你的猜想.
【探究與應(yīng)用】
(1)利用上面的結(jié)論,可得△AOB與△CQD面積比為______;
(2)當(dāng)△AOB和△CQD中有一個(gè)是等腰直角三角形時(shí),求△CQD與△AOB面積之差;
【聯(lián)想與拓展】
如圖②過點(diǎn)A作y軸的平行線交拋物線C2于點(diǎn)E,過點(diǎn)D作y軸的平行線交拋物線C1于點(diǎn)F.在y軸上任取一點(diǎn)M,連接MA、ME、MD和MF,則△MAE與△MDF面積的比值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(吉林卷)數(shù)學(xué)(解析版) 題型:解答題

如圖①,在平面直角坐標(biāo)系中,點(diǎn)P(0,m2)(m>0)在y軸正半軸上,過點(diǎn)P作平行于x軸的直線,分別交拋物線C1于點(diǎn)A、B,交拋物線C2于點(diǎn)C、D.原點(diǎn)O關(guān)于直線AB的對(duì)稱點(diǎn)為點(diǎn)Q,分別連接OA,OB,QC和QD.

【猜想與證明】

填表:

m

1

2

3

 

 

 

由上表猜想:對(duì)任意m(m>0)均有=    .請(qǐng)證明你的猜想.

【探究與應(yīng)用】

(1)利用上面的結(jié)論,可得△AOB與△CQD面積比為    ;

(2)當(dāng)△AOB和△CQD中有一個(gè)是等腰直角三角形時(shí),求△CQD與△AOB面積之差;

【聯(lián)想與拓展】

如圖②過點(diǎn)A作y軸的平行線交拋物線C2于點(diǎn)E,過點(diǎn)D作y軸的平行線交拋物線C1于點(diǎn)F.在y軸上任取一點(diǎn)M,連接MA、ME、MD和MF,則△MAE與△MDF面積的比值為    

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在平面直角坐標(biāo)系中,點(diǎn)P(0,m2)(m>0)在軸正半軸上,過點(diǎn)P作平行于軸的直線,分別交拋物線C1于點(diǎn)A、B,交拋物線C2于點(diǎn)C、D.原點(diǎn)O關(guān)于直線AB的對(duì)稱點(diǎn)為點(diǎn)Q,分別連接OA,OB,QC和QD.

猜想與證明   填表:

m

1

2

3

由上表猜想:對(duì)任意m(m>0)均有=          .請(qǐng)證明你的猜想.

探究與應(yīng)用  (1)利用上面的結(jié)論,可得⊿AOB與⊿CQD面積比為         

(2)當(dāng)⊿AOB和⊿CQD中有一個(gè)是等腰直角三角形時(shí),求⊿CQD與⊿AOB面積之差;

聯(lián)想與拓展  如圖②過點(diǎn)A作軸的平行線交拋物線C2于點(diǎn)E,過點(diǎn)D作軸的平行線交拋物線C1于點(diǎn)F.在軸上任取一點(diǎn)M,連接MA、ME、MD和MF,則⊿MAE與⊿MDF面積的比值為             .

 


查看答案和解析>>

同步練習(xí)冊答案