在矩形ABCD中,AB=6cm,BC=12cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB邊向點(diǎn)B以1cm/秒的速度移動(dòng),同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)沿BC邊向點(diǎn)C以2cm/秒的速度移動(dòng).如果P、Q兩點(diǎn)在分別到達(dá)B、C兩點(diǎn)后就停止移動(dòng),回答下列問(wèn)題:
(1)運(yùn)動(dòng)開(kāi)始后第幾秒時(shí),△PBQ的面積等于8cm2?
(2)設(shè)運(yùn)動(dòng)開(kāi)始后第t秒時(shí),五邊形APQCD的面積為Scm2,寫(xiě)出S與t的函數(shù)關(guān)系式,并指出自變量t的取值范圍.

【答案】分析:(1)根據(jù)t秒時(shí),P、Q兩點(diǎn)的運(yùn)動(dòng)路程,分別表示PB、BQ的長(zhǎng)度,可得△PBQ的面積,后令其為8cm2,求出t的值即可;
(2)用S=S矩形ABCD-S△PBQ求面積即可.
解答:解:(1)第t秒鐘時(shí),AP=t,
故PB=(6-t)cm,BQ=2tcm,
故S△PBQ=•(6-t)•2t=-t2+6t,
當(dāng)△PBQ的面積等于8cm2時(shí),-t2+6t=8,
解得:t=2或4,
即運(yùn)動(dòng)開(kāi)始后第2或4秒時(shí),△PBQ的面積等于8cm2

(2)∵S矩形ABCD=6×12=72.
∴S=72-S△PBQ=t2-6t+72(0<t<6).
點(diǎn)評(píng):本題考查矩形的性質(zhì),難度適中,解題關(guān)鍵是根據(jù)所設(shè)字母,表示相關(guān)線段的長(zhǎng)度,再計(jì)算面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,在矩形ABCD中,DE平分∠ADC交BC于點(diǎn)E,EF⊥AD交AD于點(diǎn)F,若EF=3,AE=5,則AD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4,BC=7,P是BC邊上與B點(diǎn)不重合的動(dòng)點(diǎn),過(guò)點(diǎn)P的直線交CD的延長(zhǎng)線于R,交AD于Q(Q與D不重合),且∠RPC=45°,設(shè)BP=x,梯形ABPQ的面積為y,求y與x之間的函數(shù)關(guān)系,并求自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,F(xiàn)是BC邊上一點(diǎn),AF的延長(zhǎng)線交DC的延長(zhǎng)線于G,DE⊥AG于E,且DE=DC.求證:AE=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在矩形ABCD中,AB=8,AD=6,E為AB邊上一點(diǎn),連接DE,過(guò)C作CF垂直DE.
(1)求證:△CDF∽△DEA;
(2)若設(shè)CF=x,DE=y,求y與x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,AF、BE、CE、DF分別是矩形的四個(gè)角的角平分線,E、M、F、N是其交點(diǎn),求證:四邊形EMFN是正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案