【題目】定義:若數(shù)軸上兩點(diǎn)分別對應(yīng)實(shí)數(shù),則兩點(diǎn)之間的距離記作,且.已知點(diǎn)在數(shù)軸上對應(yīng)數(shù)字、點(diǎn)在數(shù)軸上對應(yīng)數(shù)字、點(diǎn)在數(shù)軸上對應(yīng)數(shù)字、點(diǎn)在數(shù)軸上對應(yīng)數(shù)字、點(diǎn)在數(shù)軸上對應(yīng)數(shù)字.根據(jù)信息完成下列各題:
(1)=_____________.
(2)若數(shù)軸上點(diǎn)對應(yīng)實(shí)數(shù),則
①當(dāng)時(shí)=_____________;
②當(dāng)取最小值時(shí),的取值范圍為_____________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸、軸分別相交于點(diǎn)A和B.
(1)直接寫出坐標(biāo):點(diǎn)A ,點(diǎn)B ;
(2)以線段AB為一邊在第一象限內(nèi)作□ABCD,其頂點(diǎn)D(, )在雙曲線 (>)上.
①求證:四邊形ABCD是正方形;
②試探索:將正方形ABCD沿軸向左平移多少個(gè)單位長度時(shí),點(diǎn)C恰好落在雙曲線 (>)上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且|a|=|c|.
(1)若|a+c|+|b|=2,求b的值;
(2)用“>”從大到小把a(bǔ),b,﹣b,c連接起來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面為某年11月的日歷:
日 | 一 | 二 | 三 | 四 | 五 | 六 |
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
(1)在日歷上任意圈出一個(gè)豎列上相鄰的3個(gè)數(shù);
①設(shè)中間的一個(gè)數(shù)為,則另外的兩個(gè)數(shù)為 、 ;
②若已知這三個(gè)數(shù)的和為42,則這三天都在星期 ;
(2)在日歷上用一個(gè)小正方形任意圈出其中的9個(gè)數(shù),設(shè)圈出的9個(gè)數(shù)的中心的數(shù)為b,若這9個(gè)數(shù)的和為153,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為24cm的等邊三角形ABC中,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以每秒鐘2cm的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以每秒鐘4cm的速度移動(dòng).若P、Q分別從A、B同時(shí)出發(fā),其中任意一點(diǎn)到達(dá)目的地后,兩點(diǎn)同時(shí)停止運(yùn)動(dòng),求:
(1)經(jīng)過6秒后,BP= cm,BQ= cm;
(2)經(jīng)過幾秒△BPQ的面積等于?
(3)經(jīng)過幾秒后,△BPQ是直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線y=經(jīng)過Rt△BOC斜邊上的點(diǎn)A,且滿足,與BC交于點(diǎn)D,S△BOD=21,求:
(1)S△BOC
(2)k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點(diǎn)E,F分別在AB,AD上,若CE=3,且∠ECF=45°,則CF的長為( )
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且A點(diǎn)坐標(biāo)為(-6,0).
(1)求此二次函數(shù)的表達(dá)式;
(2)若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
【答案】(1)y=-x2-x+8(2)
【解析】試題分析:(1)求出一元二次方程的兩根即可求出兩點(diǎn)坐標(biāo),把B、C兩點(diǎn)坐標(biāo)代入二次函數(shù)的解析式就可解答;
(2)過點(diǎn)F作FG⊥AB,垂足為G,由EF∥AC,得△BEF∽△BAC,利用相似比求EF,利用sin∠FEG=sin∠CAB求FG,根據(jù)S=S△BCE-S△BFE,求S與m之間的函數(shù)關(guān)系式.
解:(1)解方程x2-10x+16=0得x1=2,x2=8
∴B(2,0)、C(0,8)
∴所求二次函數(shù)的表達(dá)式為y=-x2-x+8
(2)∵AB=8,OC=8,依題意,AE=m,則BE=8-m,
∵OA=6,OC=8, ∴AC=10.
∵EF∥AC, ∴△BEF∽△BAC.
∴=. 即=. ∴EF=.
過點(diǎn)F作FG⊥AB,垂足為G,
則sin∠FEG=sin∠CAB=.∴=.
∴FG=·=8-m.
∴S=S△BCE-S△BFE
=
(0<m<8)
點(diǎn)睛:本題考查了一元二次方程的解法,待定系數(shù)法求函數(shù)關(guān)系系,相似三角形的判定與性質(zhì),span>銳角三角函數(shù)的定義,割補(bǔ)法求圖形的面積,熟練掌握待定系數(shù)法求二次函數(shù)關(guān)系式、相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.
【題型】解答題
【結(jié)束】
23
【題目】如圖(1),在平面直角坐標(biāo)系中,點(diǎn)A(0,﹣6),點(diǎn)B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角邊CD在y軸上,且點(diǎn)C與點(diǎn)A重合.Rt△CDE沿y軸正方向平行移動(dòng),當(dāng)點(diǎn)C運(yùn)動(dòng)到點(diǎn)O時(shí)停止運(yùn)動(dòng).解答下列問題:
(1)如圖(2),當(dāng)Rt△CDE運(yùn)動(dòng)到點(diǎn)D與點(diǎn)O重合時(shí),設(shè)CE交AB于點(diǎn)M,求∠BME的度數(shù).
(2)如圖(3),在Rt△CDE的運(yùn)動(dòng)過程中,當(dāng)CE經(jīng)過點(diǎn)B時(shí),求BC的長.
(3)在Rt△CDE的運(yùn)動(dòng)過程中,設(shè)AC=h,△OAB與△CDE的重疊部分的面積為S,請寫出S與h之間的函數(shù)關(guān)系式,并求出面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組在活動(dòng)課上測量學(xué)校旗桿的高度.已知小亮站著測量,眼睛與地面的距離(AB)是1.7米,看旗桿頂部E的仰角為30°;小敏蹲著測量,眼睛與地面的距離(CD)是0.7米,看旗桿頂部E的仰角為45°.兩人相距5米且位于旗桿同側(cè)(點(diǎn)B、D、F在同一直線上).
(1)求小敏到旗桿的距離DF.(結(jié)果保留根號)
(2)求旗桿EF的高度.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.4,≈1.7)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com