如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE、始終經(jīng)過點A,EF與AC交于M點.
(1)求證:△ABE∽△ECM;
(2)探究:在△DEF運動過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長;若不能,請說明理由;
(3)當(dāng)線段AM最短時,求重疊部分的面積.
考點:相似三角形的判定與性質(zhì);二次函數(shù)的最值;全等三角形的判定與性質(zhì);勾股定理。
解答:(1)證明:∵AB=AC,
∴∠B=∠C,
∵△ABC≌△DEF,
∴∠AEF=∠B,
又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,
∴∠CEM=∠BAE,
∴△ABE∽△ECM;
(2)解:∵∠AEF=∠B=∠C,且∠AME>∠C,
∴∠AME>∠AEF,
∴AE≠AM;
當(dāng)AE=EM時,則△ABE≌△ECM,
∴CE=AB=5,
∴BE=BC﹣EC=6﹣5=1,
當(dāng)AM=EM時,則∠MAE=∠MEA,
∴∠MAE+∠BAE=∠MEA+∠CEM,
即∠CAB=∠CEA,
又∵∠C=∠C,
∴△CAE∽△CBA,
∴,
∴CE=,
∴BE=6﹣=;
(3)解:設(shè)BE=x,
又∵△ABE∽△ECM,
∴,
即:,
∴CM=﹣+x=﹣(x﹣3)2+,
∴AM=﹣5﹣CM═(x﹣3)2+,
∴當(dāng)x=3時,AM最短為,
又∵當(dāng)BE=x=3=BC時,
∴點E為BC的中點,
∴AE⊥BC,
∴AE==4,
此時,EF⊥AC,
∴EM==,
S△AEM=.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com