【題目】如圖,與是兩個全等的等邊三角形,,下列結(jié)論不正確的是( )
A.B.直線垂直平分
C.D.四邊形是軸對稱圖形
【答案】A
【解析】
根據(jù)與是兩個全等的等邊三角形,可得到,,,然后結(jié)合,先計算出的大小,便可計算出的大小,從而判定出AD與BC的位置關(guān)系及BE與DC的關(guān)系,同時也由于與是等腰三角形,也容易確定四邊形ABCD的對稱性.
(1)∵與是兩個全等的等邊三角形
∴,,
∴
∵
∴
∴,
∴,所以選項A錯誤;
(2)由(1)得:
∴
∴,所以選項C正確;
(3)延長BE交CD于點F,連接BD.
∵,
∴
∴
∴
即
在與中
∴
∴
∴,綜上,BE垂直平分CD,所以答案B正確;
(4)過E作,由得
而和是等腰三角形,則MN垂直平分AD、BC,所以四邊形ABCD是軕對稱圖形,所以選項B正確.
故選:A
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF.
(1)判斷AF與⊙O的位置關(guān)系并說明理由;
(2)若⊙O的半徑為4,AF=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,淇淇一家駕車從A地出發(fā),沿著北偏東60°的方向行駛,到達B地后沿著南偏東50°的方向行駛來到C地,C地恰好位于A地正東方向上,則( )
①B地在C地的北偏西50°方向上;
②A地在B地的北偏西30°方向上;
③cos∠BAC=;
④∠ACB=50°.其中錯誤的是( )
A. ①② B. ②④ C. ①③ D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了測量白塔的高度AB,在D處用高為1.5米的測角儀 CD,測得塔頂A的仰角為42°,再向白塔方向前進12米,又測得白塔的頂端A的仰角為61°,求白塔的高度AB.(參考數(shù)據(jù)sin42°≈0.67,tan42°≈0.90,sin61°≈0.87,tan61°≈1.80,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=2∠B.
(1)作∠ACB的平分線交AB于D(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);
(2)若AB=10,AC=6,求△ACD的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在AB的延長線上,AD平分∠CAE交⊙O于點D,且AE⊥CD,垂足為點E.
(1)求證:直線CE是⊙O的切線.
(2)若BC=3,CD=3,求弦AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究
如圖,在平面直角坐標系中,,點.
(1)在圖①中,點坐標為__________;
(2)如圖②,點在線段上,連接,作等腰直角三角形,,連接.證明:;
(3)在圖②的條件下,若三點共線,求的長;
(4)在軸上找一點,使面積為2.請直接寫出所有滿足條件的點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在面積為15的平行四邊形ABCD中,過點A作AE垂直于直線BC于點E,
作AF垂直于直線CD于點F,若AB=5,BC=6,則CE+CF的值為( )
A.11+B.11-
C.11+或11-D.11-或1+
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,已知點D,E,F分別為BC,AD,AE的中點,且S△ABC=12cm2,則陰影部分面積S=( 。cm2.
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com