【題目】如圖,點(diǎn)E、F分別為正方形ABCD中AB、BC邊的中點(diǎn),連接AF、DE相交于點(diǎn)G,連接CG,則tan∠CGD=

【答案】2
【解析】解:如圖所示:在正方形ABCD中,AB=AD,∠B=∠BAD=90°,
∵E、F分別為AB、BC邊的中點(diǎn),
∴AE=BF,
在△ABF和△DAE中, ,
∴△ABF≌△DAE(SAS),
∴∠AED=∠BFA,
∵∠BAF+∠AED=∠BAF+∠BFA=90°,
∴∠AGE=90°,
∴AF⊥DE,
取AD的中點(diǎn)H,連接CH,
∵H是AD的中點(diǎn),CH∥AF,
設(shè)CH與DG相交于點(diǎn)M,則MH是三角形ADG的中位線(xiàn),
∴DM=GM,
∴CH垂直平分DG,
∴CD=CG,
∴∠CGD=∠CDG,
∵AB∥CD,
∴∠CGD=∠AED,
設(shè)正方形的邊長(zhǎng)為2a,則AE=a,tan∠CGD=tan∠AED==2;
所以答案是:2.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識(shí),掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線(xiàn)相等,并且互相垂直平分,每條對(duì)角線(xiàn)平分一組對(duì)角;正方形的一條對(duì)角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線(xiàn)與邊的夾角是45o;正方形的兩條對(duì)角線(xiàn)把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用科學(xué)記數(shù)法表示:﹣0.00002005=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格上,平移△ABC,使點(diǎn)C與坐標(biāo)原點(diǎn)O重合.

(1)請(qǐng)寫(xiě)出圖中點(diǎn)A、B、C的坐標(biāo).
(2)畫(huà)出平移后的△OA1B1
(3)求△OA1A的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x與二次函數(shù)的圖象相交于O、A兩點(diǎn),點(diǎn)A(3,3),點(diǎn)M為拋物線(xiàn)的頂點(diǎn).

(1)求二次函數(shù)的表達(dá)式;

(2)長(zhǎng)度為的線(xiàn)段PQ在線(xiàn)段OA(不包括端點(diǎn))上滑動(dòng),分別過(guò)點(diǎn)P、Q作x軸的垂線(xiàn)交拋物線(xiàn)于點(diǎn)P1、Q1,求四邊形PQQ1P1面積的最大值;

(3)直線(xiàn)OA上是否存在點(diǎn)E,使得點(diǎn)E關(guān)于直線(xiàn)MA的對(duì)稱(chēng)點(diǎn)F滿(mǎn)足S△AOF=S△AOM?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1)(-28 )-(-22)-(-17 )+(-22);
(2)(-100)÷(-5)2-(- )×[34+(-32)].

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,正方形ABCD的對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,正方形A′B′C′D′的頂點(diǎn)A′與點(diǎn)O重合,A′B′交BC于點(diǎn)E,A′D′交CD于點(diǎn)F.
(1)求證:OE=OF;
(2)若正方形ABCD的對(duì)角線(xiàn)長(zhǎng)為4,求兩個(gè)正方形重疊部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明身高為140cm,比他高20cm的哥哥的身高為_______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是∠AOB的邊OB上的一點(diǎn),過(guò)點(diǎn)P畫(huà)OB的垂線(xiàn),交OA于點(diǎn)C;

(1)①過(guò)點(diǎn)C畫(huà)OB的平行線(xiàn)CD;②過(guò)點(diǎn)P畫(huà)OA的垂線(xiàn),垂足為H;
(2)線(xiàn)段PH的長(zhǎng)度是點(diǎn)P到的距離,線(xiàn)段的長(zhǎng)度是點(diǎn)C到直線(xiàn)OB的距離.線(xiàn)段PC、PH、OC這三條線(xiàn)段大小關(guān)系是(用“<”號(hào)連接).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答題

(1)如圖①,等腰直角△ABC中,∠ABC=90°,AB=BC,點(diǎn)A、B分別在坐標(biāo)軸上,若點(diǎn)C的橫坐標(biāo)為2,直接寫(xiě)出點(diǎn)B的坐標(biāo);(提示:過(guò)C作CD⊥y軸于點(diǎn)D,利用全等三角形求出OB即可)
(2)如圖②,若點(diǎn)A的坐標(biāo)為(﹣6,0),點(diǎn)B在y軸的正半軸上運(yùn)動(dòng)時(shí),分別以O(shè)B、AB為邊在第一、第二象限作等腰直角△OBF,等腰直角△ABE,連接EF交y軸于點(diǎn)P,當(dāng)點(diǎn)B在y軸的正半軸上移動(dòng)時(shí),PB的長(zhǎng)度是否發(fā)生改變?若不變,求出PB的值.若變化,求PB的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案