如圖,已知AC平分∠BAD,AB=AD.求證:△ABC≌△ADC.

證明:∵AC平分∠BAD,
∴∠BAC=∠DAC,
在△ABC和△ADC中,
∴△ABC≌△ADC.
分析:首先根據(jù)角平分線的定義得到∠BAC=∠DAC,再利用SAS定理便可證明其全等.
點評:此題主要考查了全等三角形的判定,關鍵是找準能使三角形全等的條件.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AC平分∠BAD,∠1=∠2,求證:AB=AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,已知AC平分∠BAD,∠1=∠2,AB=DC=3,則BC=
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、如圖,已知AC平分∠BAD,AB∥DC,AB=DC=3,則AD=
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖,已知AC平分∠BAD,∠1=∠2,求證:AB=AD.
精英家教網(wǎng)精英家教網(wǎng)
(2)已知:如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,AC交⊙O于點E,∠BAC=45°.
①求∠EBC的度數(shù);
②求證:BD=CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.
(1)試說明CE=CF.
(2)△BCE與△DCF全等嗎?試說明理由.
(3)若AC=10,CE=6,AD=5,求DF的長
(4)若AB=21,AD=9,BC=CD=10,求AC的長.

查看答案和解析>>

同步練習冊答案