如圖,△ABC是邊長(zhǎng)為2的等邊三角形,將△ABC沿射線BC向右平移得到△DCE,連接AD、BD,下列結(jié)論錯(cuò)誤的是( )

A.AD∥BC
B.AC⊥BD
C.四邊形ABCD面積為4
D.四邊形ABED是等腰梯形
【答案】分析:本題考查了平移的性質(zhì)、等邊三角形的判定和性質(zhì)、等腰梯形的判定、菱形的判定和性質(zhì).對(duì)選項(xiàng)進(jìn)行證明,從而得到正確答案.
解答:解:A、經(jīng)過平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等,對(duì)應(yīng)線段平行且相等,AD∥BE,故正確;
B、由菱形的性質(zhì)知,對(duì)角線互相垂直,所以有AC⊥BD,故正確;
C、∵△ABC≌△CED,
∴AB=BC=CE=DE=CD,∠ACB=∠ECD=60°,
∴∠ACD=180°-∠ACB-∠ECD=60°,
∴△ACD也是等邊三角形,有AD=AB=BC=CD,
∴四邊形ADCB是菱形,
∴SABCD=2S△ABC=2××AB×BC×sin60°=2,故錯(cuò)誤;
D、∵AD∥BE,AB=DE,
∴四邊形ABED是等腰梯形,故正確.
故選C.
點(diǎn)評(píng):本題是一道涉及平移的性質(zhì)、等邊三角形的判定和性質(zhì)、等腰梯形的判定和菱形的判定和性質(zhì)結(jié)合求解的綜合題.考查了整體的數(shù)學(xué)思想和正確運(yùn)算的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是邊長(zhǎng)為a的等邊三角形,O為△ABC的中心.將△ABC繞著中心O旋轉(zhuǎn)120°.
①直接寫出△ABC的內(nèi)切圓半徑r和外接圓半徑R分別是多少?
②設(shè)點(diǎn)D、E、F分別在邊AB、BC、CA上,且AD=2DB,BE=2EC,CF=2FA,試畫出△DEF,說明它的形狀,并計(jì)算它的周長(zhǎng);
③根據(jù)“線動(dòng)成面”的道理,△ABC的三條邊AB、BC和CA在旋轉(zhuǎn)過程中掃過的部分組成的平面圖形的形狀是什么?并計(jì)算出此圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•遵義)如圖,△ABC是邊長(zhǎng)為6的等邊三角形,P是AC邊上一動(dòng)點(diǎn),由A向C運(yùn)動(dòng)(與A、C不重合),Q是CB延長(zhǎng)線上一點(diǎn),與點(diǎn)P同時(shí)以相同的速度由B向CB延長(zhǎng)線方向運(yùn)動(dòng)(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當(dāng)∠BQD=30°時(shí),求AP的長(zhǎng);
(2)當(dāng)運(yùn)動(dòng)過程中線段ED的長(zhǎng)是否發(fā)生變化?如果不變,求出線段ED的長(zhǎng);如果變化請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•溧水縣一模)如圖,△ABC是邊長(zhǎng)為4的等邊三角形,將△ABC沿直線BC向右平移,使B點(diǎn)與C點(diǎn)重合,得到△DCE,連結(jié)BD,交AC于F.
(1)猜想BD與DE的位置關(guān)系,并證明你的結(jié)論;
(2)求△BDE的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湘潭)如圖,△ABC是邊長(zhǎng)為3的等邊三角形,將△ABC沿直線BC向右平移,使B點(diǎn)與C點(diǎn)重合,得到△DCE,連接BD,交AC于F.
(1)猜想AC與BD的位置關(guān)系,并證明你的結(jié)論;
(2)求線段BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是邊長(zhǎng)為3的等邊三角形,△BDC是等腰三角形,且∠BDC=120°,以D為頂點(diǎn)做一個(gè)60°角,使其兩邊分別交AB于點(diǎn)M,交AC于點(diǎn)N,連接MN,則△AMN的周長(zhǎng)為
6
6

查看答案和解析>>

同步練習(xí)冊(cè)答案