【題目】如圖,在正方形網(wǎng)格中,ABC的三個頂點都在格點上,點AB、C的坐標(biāo)分別為(-2,4)、(-20)、(-4,1),結(jié)合所給的平面直角坐標(biāo)系解答下列問題:

1)將ABCO點逆時針旋轉(zhuǎn)90°,得到A1B1C1;

2)以點P(-11)為位似中心,在ABC的異側(cè)作位似變換,且使ABC的面積擴(kuò)大為原來的4倍,得到A2B2C2,并寫出點A2的坐標(biāo).

【答案】(1)作圖見解析(2)作圖見解析,點A2的坐標(biāo)為:(1,-5

【解析】

1)根據(jù)旋轉(zhuǎn)的意義,分別連接OA、OB、OC,將它們繞點O分別逆時針旋轉(zhuǎn)90°即可.

2)根據(jù)相似的性質(zhì),得出兩圖形的相似比,相似比即為位似比,然后根據(jù)位似的作圖方法進(jìn)行位似作圖即可.通過觀察圖形即可確定A2的坐標(biāo).

解:(1)分別連接OA、OB、OC

將OA、OB、OC分別以點O為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)90°,到,連接,如圖所示:A1B1C1,即為所求;

2)根據(jù)相似的性質(zhì),面積之比等于相似比的平方,可知變換后的圖形與三角形ABC相似,且相似比為,位似比等于相似比,連接AP并延長AP到,使=2AP,連接CP并延長CP到,使=2CP,連接BP,并延長BP至,使,連接如圖所示:A2B2C2,即為所求,由圖可知:點A2的坐標(biāo)為:(1,-5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 拋物線軸交于點A(-1,0),頂點坐標(biāo)(1,n)與軸的交點在(0,2),(0,3)之間(包 含端點),則下列結(jié)論:①;②;③對于任意實數(shù)m,總成立;④關(guān)于的方程有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為  

A. 1 個 B. 2 個 C. 3 個 D. 4 個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為增加體育館觀眾坐席數(shù)量,決定對體育館進(jìn)行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點A到地面的鉛直高度AC長度為15米,原坡面AB的傾斜角∠ABC45°,原坡腳B與場館中央的運(yùn)動區(qū)邊界的安全距離BD5米.如果按照施工方提供的設(shè)計方案施工,新座位區(qū)最高點E到地面的鉛直高度EG長度保持15米不變,使A、E兩點間距離為2米,使改造后坡面EF的傾斜角∠EFG37°.若學(xué)校要求新坡腳F需與場館中央的運(yùn)動區(qū)邊界的安全距離FD至少保持2.5米(即FD2.5),請問施工方提供的設(shè)計方案是否滿足安全要求呢?請說明理由.(參考數(shù)據(jù):sin37°,tan37°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,D是線段AC上一點(不與A,C重合),連接BD,將沿AB翻折,使點D落在點E處,延長BDEA的延長線交于點F,若是直角三角形,則AF的長為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為全面貫徹黨的教育方針,堅持“健康第一的教育理念,促進(jìn)學(xué)生健康成長,提高體質(zhì)健康水平,成都市調(diào)整體育中考實施方案:分值增加至60,男1000(女80米)必考,足球、籃球、排球“三選一”……從2019年秋季新入學(xué)的七年級起開始實施,某1學(xué)為了解七年級學(xué)生對三大球類運(yùn)動的喜愛情況,從七年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查問卷,通過分析整理繪制了如下兩幅統(tǒng)計圖。請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:

1)求參與調(diào)查的學(xué)生中,喜愛排球運(yùn)動的學(xué)生人數(shù),并補(bǔ)全條形圖

2)若該中學(xué)七年級共有400名學(xué)生,請你估計該中學(xué)七年級學(xué)生中喜愛籃球運(yùn)動的學(xué)生有多少名?

3)若從喜愛足球運(yùn)動的2名男生和2名女生中隨機(jī)抽取2名學(xué)生,確定為該校足球運(yùn)動員的重點培養(yǎng)對象,請用列表法或畫樹狀圖的方法求抽取的兩名學(xué)生為一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點D在△ABC的內(nèi)部且DB=DC,點E,F在在△ABC的外部,FB=FA,EA=EC,∠FBA=DBC=ECA.

解答下列問題:

1)①填空:△ACE____________________;

②求證:△CDE∽△CBA;

2)求的值;

3)若點D在∠BAC的平分線上,判斷四邊形AFDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖象交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖象于點M,交AB于點N,連接BM.

(1)求m的值和反比例函數(shù)的表達(dá)式;

(2)直線y=n沿y軸方向平移,當(dāng)n為何值時,△BMN的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩個黑布袋,A布袋中有四個除標(biāo)號外完全相同的小球,小球上分別標(biāo)有數(shù)字01,2,3,B布袋中有三個除標(biāo)號外完全相同的小球,小球上分別標(biāo)有數(shù)字0,12.小明先從A布袋中隨機(jī)取出一個小球,用m表示取出的球上標(biāo)有的數(shù)字,再從B布袋中隨機(jī)取出一個小球,用n表示取出的球上標(biāo)有的數(shù)字.

1)若用(m,n)表示小明取球時mn 的對應(yīng)值,用列表法(或畫樹狀圖)表示出(mn)的所有取值;

2)求關(guān)于x的一元二次方程有實數(shù)根的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+m+1x軸于點(a,0)和點(b0),交y軸于點C,拋物線頂點為D,下列四個結(jié)論中:①當(dāng)x0時,y0;②若a=﹣1,則b3;③拋物線上有兩點Px1,y1)和Qx2y2),若x11x2,且x1+x22,則y1y2;④點C關(guān)于拋物線對稱軸的對稱點為E,點G、F分別在x軸和y軸上,當(dāng)m2時,四邊形EDFG周長的最小值為6.其中正確的有( 。﹤

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案