【題目】如圖,已知直線y=-2x經(jīng)過點P(-2,m),點P關(guān)于y軸的對稱點P′在反比例函數(shù)()的圖象上.
(1)求m的值;
(2)直接寫出點P′的坐標;
(3)求反比例函數(shù)的解析式.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=10cm,長為4cm的線段DE在邊AC上,且點D與點A重合,點F是DE的中點,線段DE從點A出發(fā),沿AC方向向點C勻速運動,直到點E與點C重合,速度1cm/s。過點F作PF⊥AC,交AB于點P,過點P作PQ//AC,交BC于點Q,連接PD,PE,QE,設(shè)線段DE的運動時間為t(s).(0≤t≤6)
(1)請分別用含有t的代數(shù)式表示線段PF、BQ
(2)當t為何值時,四邊形PFCQ為正方形?
(3)設(shè)四邊形PDEQ的面積為y(cm)請求出y與t之間的函數(shù)關(guān)系式,并求出當t為何值時,四邊形PDEQ的面積最大,最大是多少?
(4)是否存在某一時刻t,使得EP平分∠AEQ?若存在,求出此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點,連接DE.過點A作AF⊥DE,垂足為F,⊙O經(jīng)過點C、D、F,與AD相交于點G.
(1)求證:△AFG∽△DFC;
(2)若正方形ABCD的邊長為4,AE=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點C射進房間的地板F處,中午太陽光恰好能從窗戶的最低點D射進房間的地板E處,小明測得窗子距地面的高度OD=0.8 m,窗高CD=1.2 m,并測得OE=0.8 m,OF=3 m,求圍墻AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一個問題:“今有邑方不知大小,各開中門,出北門三十步有木,出西門七百五十步見木,問:邑方幾何?” .其大意是:如圖,一座正方形城池,A為北門中點,從點A往正北方向走30步到B出有一樹木,C為西門中點,從點C往正西方向走750步到D處正好看到B處的樹木,求正方形城池的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某公園內(nèi)有座橋,橋的高度是5米,CB⊥DB,坡面AC的傾斜角為45°,為方便老人過橋,市政部門決定降低坡度,使新坡面DC的坡度為i= :3.若新坡角外需留下2米寬的人行道,問離原坡角(A點處)6米的一棵樹是否需要移栽?(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,DE∥BC,點F在邊AC上,DF與BE相交于點G,且∠EDF=∠ABE.
求證:(1)△DEF∽△BDE;(2)DGDF=DBEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知長方形硬紙板ABCD的長BC為40cm,寬CD為30cm,按如圖所示剪掉2個小正方形和2個小長方形(即圖中陰影部分),將剩余部分折成一個有蓋的長方體盒子,
設(shè)剪掉的小正方形邊長為xcm.(紙板的厚度忽略不計)
(1)填空:EF= .cm,GH= .cm;(用含x的代數(shù)式表示)
(2)若折成的長方體盒子的表面積為950cm2,求該長方體盒子的體積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,A、B兩個頂點在軸的上方,點C的坐標是(1,0).以點C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,設(shè)點B的對應(yīng)點B′的橫坐標是a,則點B的橫坐標是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com