(2009•三明)如圖,△ABC是邊長(zhǎng)為2的等邊三角形,將△ABC沿射線BC向右平移得到△DCE,連接AD、BD,下列結(jié)論錯(cuò)誤的是( )

A.AD∥BC
B.AC⊥BD
C.四邊形ABCD面積為4
D.四邊形ABED是等腰梯形
【答案】分析:本題考查了平移的性質(zhì)、等邊三角形的判定和性質(zhì)、等腰梯形的判定、菱形的判定和性質(zhì).對(duì)選項(xiàng)進(jìn)行證明,從而得到正確答案.
解答:解:A、經(jīng)過(guò)平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等,對(duì)應(yīng)線段平行且相等,AD∥BE,故正確;
B、由菱形的性質(zhì)知,對(duì)角線互相垂直,所以有AC⊥BD,故正確;
C、∵△ABC≌△CED,
∴AB=BC=CE=DE=CD,∠ACB=∠ECD=60°,
∴∠ACD=180°-∠ACB-∠ECD=60°,
∴△ACD也是等邊三角形,有AD=AB=BC=CD,
∴四邊形ADCB是菱形,
∴SABCD=2S△ABC=2××AB×BC×sin60°=2,故錯(cuò)誤;
D、∵AD∥BE,AB=DE,
∴四邊形ABED是等腰梯形,故正確.
故選C.
點(diǎn)評(píng):本題是一道涉及平移的性質(zhì)、等邊三角形的判定和性質(zhì)、等腰梯形的判定和菱形的判定和性質(zhì)結(jié)合求解的綜合題.考查了整體的數(shù)學(xué)思想和正確運(yùn)算的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年3月湖北省鄂州市鄂城區(qū)燕磯中學(xué)九年級(jí)(下)月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•三明)如圖,在平面直角坐標(biāo)系xOy中,拋物線y=-x2+bx+c與x軸交于A(1,0)、B(5,0)兩點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)C的坐標(biāo);
(2)設(shè)拋物線的對(duì)稱(chēng)軸與x軸交于點(diǎn)D,將∠DCB繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),角的兩邊CD和CB與x軸分別交于點(diǎn)P、Q,設(shè)旋轉(zhuǎn)角為α(0°<α≤90°).
①當(dāng)α等于多少度時(shí),△CPQ是等腰三角形?
②設(shè)BP=t,AQ=s,求s與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2009•三明)如圖,在平面直角坐標(biāo)系xOy中,拋物線y=-x2+bx+c與x軸交于A(1,0)、B(5,0)兩點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)C的坐標(biāo);
(2)設(shè)拋物線的對(duì)稱(chēng)軸與x軸交于點(diǎn)D,將∠DCB繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),角的兩邊CD和CB與x軸分別交于點(diǎn)P、Q,設(shè)旋轉(zhuǎn)角為α(0°<α≤90°).
①當(dāng)α等于多少度時(shí),△CPQ是等腰三角形?
②設(shè)BP=t,AQ=s,求s與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年福建省廈門(mén)市湖里區(qū)九年級(jí)下適應(yīng)性考試數(shù)學(xué)模擬試卷(5)(解析版) 題型:解答題

(2009•三明)如圖,在平面直角坐標(biāo)系xOy中,拋物線y=-x2+bx+c與x軸交于A(1,0)、B(5,0)兩點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)C的坐標(biāo);
(2)設(shè)拋物線的對(duì)稱(chēng)軸與x軸交于點(diǎn)D,將∠DCB繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),角的兩邊CD和CB與x軸分別交于點(diǎn)P、Q,設(shè)旋轉(zhuǎn)角為α(0°<α≤90°).
①當(dāng)α等于多少度時(shí),△CPQ是等腰三角形?
②設(shè)BP=t,AQ=s,求s與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年福建省三明市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•三明)如圖,在平面直角坐標(biāo)系xOy中,拋物線y=-x2+bx+c與x軸交于A(1,0)、B(5,0)兩點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)C的坐標(biāo);
(2)設(shè)拋物線的對(duì)稱(chēng)軸與x軸交于點(diǎn)D,將∠DCB繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),角的兩邊CD和CB與x軸分別交于點(diǎn)P、Q,設(shè)旋轉(zhuǎn)角為α(0°<α≤90°).
①當(dāng)α等于多少度時(shí),△CPQ是等腰三角形?
②設(shè)BP=t,AQ=s,求s與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案