(2011•德陽(yáng))如圖,在直角三角形ABC中,∠C=90°,AC=12.BC=16,點(diǎn)0為△ABC的內(nèi)心,點(diǎn)M為斜邊AB的中點(diǎn),則OM的長(zhǎng)為
2
5
2
5
分析:首先利用切線長(zhǎng)定理求出AF的長(zhǎng),進(jìn)而求出FO,F(xiàn)M,即可求出MO的長(zhǎng)度.
解答:解:作△ABC的內(nèi)切圓⊙O,
設(shè)⊙O與△ABC相切于點(diǎn)E,D,F(xiàn),設(shè)AF=x,
∵∠C=90°,AC=12.BC=16,
∴AB=20,
∴BD=BF=20-x,DC=EC=12-x,
∴20-x+12-x=16,
解得:x=8,
∵點(diǎn)M為斜邊AB的中點(diǎn),
∴AM=10,
∴FM=2,
∵FO是△ABC內(nèi)切圓半徑,
∴FO=
12+16-20
2
=4,
∴OM=
FO2+FM2
=2
5

故答案為:2
5
點(diǎn)評(píng):此題主要考查了內(nèi)切圓的性質(zhì)以及切線長(zhǎng)定理,利用已知得出FM的長(zhǎng)是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•德陽(yáng))如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(a,0),B(0,b),如果將線段AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°至CB,那么點(diǎn)C的坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•德陽(yáng))如圖,有一塊△ABC材料,BC=10,高AD=6,把它加工成一個(gè)矩形零件,使矩形的一邊GH在BC上,其余兩個(gè)頂點(diǎn)E,F(xiàn)分別在AB,AC上,那么矩形EFHG的周長(zhǎng)l的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•德陽(yáng))如圖,在△ABC中,AD⊥BC于D,如果BD=9,DC=5,cosB=
3
5
,E為AC的中點(diǎn),那么sin∠EDC的值為
12
13
12
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•德陽(yáng))如圖,已知一次函數(shù)y=-x+1與反比例函數(shù)y=
kx
的圖象相交于A,B兩點(diǎn),且點(diǎn)A的坐標(biāo)為(2,t).
(1)求反比例函數(shù)的解析式和點(diǎn)B的坐標(biāo);
(2)直線y=-x+1與x軸相交于點(diǎn)C,點(diǎn)C關(guān)于y軸的對(duì)稱點(diǎn)為C',求△BCC'的外接圓的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案