精英家教網 > 初中數學 > 題目詳情
閱讀并解答問題
用配方法可以解一元二次方程,還可以用它來解決很多問題.例如:因為3a2≥0,所以3a2+1就有最小值1,即3a2+1≥1,只有當a=0時,才能得到這個式子的最小值1.同樣,因為-3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0時,才能得到這個式子的最大值1.
(1)當x=______時,代數式-2(x-1)2+3有最______(填寫大或。┲禐開_____.
(2)當x=______時,代數式-2x2+4x+3有最______(填寫大或。┲禐開_____.
(3)矩形花園的一面靠墻,另外三面的柵欄所圍成的總長度是16m,當花園與墻相鄰的邊長為多少時,花園的面積最大?最大面積是多少?
(1)1,大,3;     

(2)∵-2x2+4x+3=-2(x-1)2+5,
∴當x=1時,代數式-2x2+4x+3有最大值為5,
故答案為:1,大,5;

(3)根據題意可得:當花園與墻相鄰的寬為x時,
S=x(16-2x)=-2x2+16x,
當x=-
b
2a
=-
16
2×(-2)
=4時,
S最大=
4ac-b2
4a
=
-16×16
4×(-2)
=32,
∴長為8時,面積最大是32.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,隧道的截面由拋物線AED和矩形ABCD構成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標系,y軸是拋物線的對稱軸,頂點E到坐標原點O的距離為6m.
(1)求拋物線的解析式;
(2)一輛貨運卡車高4.5m,寬2.4m,它能通過該隧道嗎?
(3)如果該隧道內設雙行道,為了安全起見,在隧道正中間設有0.4m的隔離帶,則該輛貨運卡車還能通過隧道嗎?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

若拋物線如圖所示,則該二次函數的解析式為______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx-3與x軸交于A、B兩點,與y軸交于C點,經過A、B、C三點的圓的圓心M(1,m)恰好在此拋物線的對稱軸上,⊙M的半徑為
5
.設⊙M與y軸交于D,拋物線的頂點為E.
(1)求m的值及拋物線的解析式;
(2)設∠DBC=α,∠CBE=β,求sin(α-β)的值;
(3)探究坐標軸上是否存在點P,使得以P、A、C為頂點的三角形與△BCE相似?若存在,請指出點P的位置,并直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線y=x2-4x+3與x軸交于兩點A、B(A在B左側),與y軸交于點C.
(1)對于任意實數m,點M(m,-3)是否在該拋物線上?請說明理由;
(2)求∠ABC的度數;
(3)若點P在拋物線上,且使得△PBC是以BC為直角邊的直角三角形,試求出點P的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在直角坐標系XOY中,二次函數圖象的頂點坐標為C(4,-
3
)
,且與x軸的兩個交點間的距離為6.
(1)求二次函數解析式;
(2)在x軸上方的拋物線上,是否存在點Q,使得以點Q、A、B為頂點的三角形與△ABC相似?如果存在,請求出Q點的坐標,如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,一次函數y=-
1
2
x+2
分別交y軸、x軸于A、B兩點,拋物線y=-x2+bx+c過A、B兩點.
(1)求這個拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當t取何值時,MN有最大值?最大值是多少?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

附加題:如圖所示,已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點離水面8m,以水平線AB為x軸,AB的中點為原點建立坐標系.
(1)此橋拱線所在拋物線的解析式.
(2)橋邊有一浮在水面部分高4m,最寬處12
2
m的魚船,試探索此船能否開到橋下?說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖①,Rt△ABC中,∠B=90°,∠CAB=30度.它的頂點A的坐標為(10,0),頂點B的坐標為(5,5
3
)
,AB=10,點P從點A出發(fā),沿A→B→C的方向勻速運動,同時點Q從點D(0,2)出發(fā),沿y軸正方向以相同速度運動,當點P到達點C時,兩點同時停止運動,設運動的時間為t秒.
(1)求∠BAO的度數.
(2)當點P在AB上運動時,△OPQ的面積S(平方單位)與時間t(秒)之間的函數圖象為拋物線的一部分,(如圖②),求點P的運動速度.
(3)求(2)中面積S與時間t之間的函數關系式及面積S取最大值時點P的坐標.
(4)如果點P,Q保持(2)中的速度不變,那么點P沿AB邊運動時,∠OPQ的大小隨著時間t的增大而增大;沿著BC邊運動時,∠OPQ的大小隨著時間t的增大而減小,當點P沿這兩邊運動時,使∠OPQ=90°的點P有幾個?請說明理由.

查看答案和解析>>

同步練習冊答案