【題目】△ABC 三個(gè)頂點(diǎn)的坐標(biāo)分別為 A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC 向左平移 5 個(gè)單位長度后得到的△A1B1C1;
(2)在 x 軸上求作一點(diǎn) P,使△PAB 的周長最小,請畫出△PAB,并直接寫出 P 的坐標(biāo).
【答案】(1)見解析 (2)點(diǎn)P(2,0).
【解析】
試題(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C平移后的對應(yīng)點(diǎn)A1、B1、C1的位置,然后順次連接即可;(2)找出點(diǎn)A關(guān)于x軸的對稱點(diǎn)A′,連接A′B與x軸相交于一點(diǎn),根據(jù)軸對稱確定最短路線問題,交點(diǎn)即為所求的點(diǎn)P的位置,然后連接AP、BP并根據(jù)圖象寫出點(diǎn)P的坐標(biāo)即可.
試題解析:(1)畫對圖形 2分
(2)作出對稱點(diǎn) 3分
作出P點(diǎn) 4分
P(2,0) 6分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC外分別以AB,AC為邊作兩個(gè)大小不同的等腰直角三角形ABD和等腰直角三角形ACE,其中∠DAB=∠CAE=90°,AB=AD,AC=AE.連結(jié)DCBE交于F點(diǎn).
(1)請你找出一對全等的三角形,并加以證明;
(2)直線DC、BE是否互相垂直,請說明理由;
(3)求證:∠DFA=∠EFA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y=mx+4m與x軸負(fù)半軸、y軸正半軸分別交于A、B兩點(diǎn).
(1)如圖(1),當(dāng)OA=OB時(shí),求直線l1的解析式;
(2)如圖(2),當(dāng)m取不同的值時(shí),點(diǎn)B在y軸正半軸上運(yùn)動,分別以OB、AB為腰,點(diǎn)B為直角頂點(diǎn)在第一、二象限作等腰直角△OBF和等腰直角△ABE,連接EF交y軸于點(diǎn)P,試猜想PB的長是否為定值?若是,求出其值;若不是,說明理由.
(3)m取不同的值時(shí),點(diǎn)B在y軸正半軸上運(yùn)動,以AB為腰,點(diǎn)B為直角頂點(diǎn)在第二象限作等腰直角△ABD,滿足條件的動點(diǎn)D在直線l2上運(yùn)動,直線l2與x軸和y軸分別交于F、H兩點(diǎn),若直線l1將△OHF分成面積比為m:1的兩部分,求此時(shí)直線l1和直線l2的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正確的結(jié)論是
A. ①②③⑤ B. ①③④ C. ②③④⑤ D. ①②⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)n度后得到△EDC,此時(shí)點(diǎn)D落在AB邊上,斜邊DE交AC于點(diǎn)F,則n的大小和圖中陰影部分的面積分別為( )
A. 30,2 B. 60,2 C. 60, D. 60,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,已知點(diǎn)C在線段AB上,AC=6cm,且BC=4cm,M、N分別是AC、BC的中點(diǎn),求線段MN的長度;
(2)在(1)題中,如果其他條件不變,你能猜出MN的長度嗎?請你用一句簡潔的話表達(dá)你發(fā)現(xiàn)的規(guī)律;
(3)對于(1)題,當(dāng)點(diǎn)C在BA的延長線上時(shí),且AB=其他條件不變,求MN的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)大矩形按如圖方式分割成九個(gè)小矩形,且只有標(biāo)號為①和②的兩個(gè)小矩形為正方形.在滿足條件的所有分割中,若知道九個(gè)小矩形中n個(gè)小矩形的周長,就一定能算出這個(gè)在大矩形的面積,則n的最小值是 ( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)O到△ABC的兩邊AB,AC所在直線的距離相等,且OB=OC.
(1)如圖①,若點(diǎn)O在邊BC上,求證:AB=AC;
(2)如圖②,若點(diǎn)O在△ABC的內(nèi)部,求證:AB=AC;
(3)若點(diǎn)O在△ABC的外部,AB=AC成立嗎?請畫圖表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五一節(jié)快到了,甲、乙兩家旅行社為了吸引更多的顧客,分別提出了赴某地旅游的團(tuán)體優(yōu)惠方法,甲旅行社的優(yōu)惠方法是:買4張全票,其余人按半價(jià)優(yōu)惠;乙旅行社的優(yōu)惠方法是:一律按7折優(yōu)惠,已知兩家旅行社的原價(jià)均為每人100元。(旅游人數(shù)超過4人)
(1)分別表示出甲旅行社收費(fèi)y1 ,乙旅行社收費(fèi)y2與旅游人數(shù)x的函數(shù)關(guān)系式.
(2)就參加旅游的人數(shù)討論哪家旅行社的收費(fèi)更優(yōu)惠?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com