某綠化單位捐贈(zèng)66棵樹給某校美化校園.現(xiàn)有一勞動(dòng)小組去完成種植任務(wù).第一次每人分配若干棵樹后,還剩6棵;第二次每人再增加2棵,則缺6棵.設(shè)第一次每人分配x棵樹.
(1)該勞動(dòng)小組的人數(shù)為______(用含x代數(shù)式表示);
(2)求第一次每人分配多少棵樹.
解:(1)由題意,得:
或
,
故答案為:
或
;
(2)由題意得,
=
,
解得:x=10,
經(jīng)檢驗(yàn),x=10是原方程的解,且符合題意.
答:第一次每人分配10棵樹.
分析:(1)根據(jù)樹苗的總數(shù)÷每人分配的樹的數(shù)量就可以得出種樹人數(shù)而得出結(jié)論;
(2)根據(jù)兩次不同的分配方式的人數(shù)相等建立方程求出其解就可以了.
點(diǎn)評(píng):本題考查了樹苗的總數(shù)÷每人分配的樹的數(shù)量=種樹人數(shù)的運(yùn)用,列分式方程解實(shí)際問(wèn)題的運(yùn)用,分式方程的解法的運(yùn)用,解答中驗(yàn)根是容易忘記的過(guò)程,要提請(qǐng)學(xué)生注意.