(1)解方程x(x-1)=2.
有學(xué)生給出如下解法:
∵x(x-1)=2=1×2=(-1)×(-2),
數(shù)學(xué)公式數(shù)學(xué)公式數(shù)學(xué)公式數(shù)學(xué)公式
解上面第一、四方程組,無(wú)解;解第二、三方程組,得x=2或x=-1.
∴x=2或x=-1.
請(qǐng)問(wèn):這個(gè)解法對(duì)嗎?試說(shuō)明你的理由.
(2)在平面幾何中,我們可以證明:周長(zhǎng)一定的多邊形中,正多邊形面積最大.
使用上邊的事實(shí),解答下面的問(wèn)題:
用長(zhǎng)度分別為2,3,4,5,6(單位:cm)的五根木棒圍成一個(gè)三角形(允許連接,但不允許折斷),求能夠圍成的三角形的最大面積.

解:(1)答案一:
對(duì)于這個(gè)特定的已知方程,解法是對(duì)的.
理由是:一元二次方程有根的話,只能有兩個(gè)根,此學(xué)生已經(jīng)將兩個(gè)根都求出來(lái)了,所以對(duì).
答案二:
解法不嚴(yán)密,方法不具有一般性.
理由是:為何不可以2=3×等,得到其它的方程組此學(xué)生的方法只是巧合了,求對(duì)了方程的解.

(2)解:因?yàn)橹荛L(zhǎng)一定(2+3+4+5+6=20cm)的三角形中,以正三角形的面積最大.
取三邊盡量接近,使圍成的三角形盡量接近正三角形,則面積最大.
此時(shí),三邊為6、5+2、4+3,這是一個(gè)等腰三角形.
可求得其最大面積為6
分析:(1)這種做法不對(duì),兩個(gè)數(shù)的積是2,這兩個(gè)數(shù)的情況有無(wú)數(shù)種,不一定只是所列出的幾種;
(2)因?yàn)橹荛L(zhǎng)一定的多邊形中,正多邊形面積最大,那么就把五根木棒都用上,不會(huì)得到正三角形,也就是等邊三角形,只能取最接近的辦法,即2+5,3+4,6來(lái)圍成三角形,其面積最大,得到一個(gè)等腰三角形,則其底邊上的高等于2,S=6
點(diǎn)評(píng):本題利用了解一元二次方程,以及周長(zhǎng)一定的多邊形中,正多邊形面積最大等知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、解方程x2-|x|-2=0,
解:1.當(dāng)x≥0時(shí),原方程化為x2-x-2=0,解得:x1=2,x2=-1[不合題意,舍去].
2.當(dāng)x<o(jì)時(shí),原方程化為:x2+x-2=0,解得:x1=1,(不合題意,舍去)x2=-2.所以原方程的根為:x1=2,x2=-2
請(qǐng)參照例題解方程:x2-|x-1|-1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)解方程:4(x-1)=1-x
(2)解方程:
x+1
2
-
2-3x
3
=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程:
x-
x-1
2
=
2
3
-
x+2
3

解:去分母,得6x-3x+1=4-2x+4…①
即-3x+1=-2x+8…②
移項(xiàng),得-3x+2x=8-1…③
合并同類項(xiàng),得-x=7…④
∴x=-7…⑤
上述解方程的過(guò)程中,是否有錯(cuò)誤?答:
 
;如果有錯(cuò)誤,則錯(cuò)在
 
步.如果上述解方程有錯(cuò)誤,請(qǐng)你給出正確的解題過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算與解方程:
(1)
3-x
2x-4
÷(x+2-
5
x-2
)
;
(2)
x
x-y
y2
x+y
-
x4y
x4-y4
÷
x2
x2+y2
;
(3)
5
2x+3
=
3
x-1
;
(4)
x
x+2
-
x+2
x-2
=
8
x2-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算下列各題:
(1)先化簡(jiǎn)再求值:
x2+x
x
÷(x+1)+
x2-x-2
x-2
,(其中x=-3).
(2)解方程
1
x+1
+
2
x-1
=
4
x2-1

查看答案和解析>>

同步練習(xí)冊(cè)答案