初中生對待學(xué)習(xí)的態(tài)度一直是教育工作者關(guān)注的問題之一.為此無錫市教育局對我市部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:

(1)此次抽樣調(diào)查中,共調(diào)查了        名學(xué)生;

(2)將圖①補充完整;

(3)求出圖②中C級所占的圓心角的度數(shù);

(4)根據(jù)抽樣調(diào)查結(jié)果,請你估計我市近80000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級和B級)?


(1)200;(2)畫圖見解析;(3)54°;(4)68000名.

【解析】(1)50÷25%=200(名) 

(2)200-50-120=30(名)

(3)(1-60%-25%)×360°=54°

(4)80000×(60%+25%)=68000(名)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


計算:=            

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知反比例函數(shù)的圖象經(jīng)過點(,8),直線經(jīng)過該反比例函數(shù)圖象上的點Q(4,).

(1)求上述反比例函數(shù)和直線的函數(shù)表達(dá)式;

(2)設(shè)該直線與軸、軸分別相交于A 、B兩點,與反比例函數(shù)圖象的另一個交點為P,連結(jié)0P、OQ,求△OPQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,直角三角形紙片ABC中,AB=3,AC=4,D為斜邊BC中點,第1次將紙片折疊,使點A與點D重合,折痕與AD交與點P1;設(shè)P1D的中點為D1,第2次將紙片折疊,使點A與點D1重合,折痕與AD交于點P2;設(shè)P2D1的中點為D2,第3次將紙片折疊,使點A與點D2重合,折痕與AD交于點P3;…;設(shè)Pn-1Dn-2的中點為Dn-1,第n次將紙片折疊,使點A與點Dn-1重合,折痕與AD交于點Pn(n>2),則AP6的長為(  )

 

A.           B.       C.          D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,點A是半圓上一個三等分點,點B是的中點,點P是直徑MN上一動點,若⊙O的半徑為1,則AP+BP的最小值是               

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如果有兩點到一條直線的距離相等,那么稱這條直線為 “兩點的等距線”.

圖1

 

(1)如圖1,直線CD經(jīng)過線段AB的中點P,試說明直線CD是點A、B的一條等距線.

(2)如圖2,A、B、C是正方形網(wǎng)格中的三個格點,請在網(wǎng)格中作出所有的直線m,使直線m過點C且直線m是“A、B的等距線”.

(3)如圖3,拋物線過點(,),(3,),頂點為C.拋物線上是否存在點P ,使,若存在,求出點P的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


對于實數(shù)x,我們規(guī)定表示大于x的最小整數(shù),如,現(xiàn)對64進(jìn)行如下操作:,這樣對64只需進(jìn)行4次操作后變?yōu)?,類似地,只需進(jìn)行4次操作后變?yōu)?的所有正整數(shù)中,最大的是          .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 閱讀理解: 對非負(fù)實數(shù)x“四舍五入”到個位的值記為<x>,

即:當(dāng)n為非負(fù)整數(shù)時,如果,則<x>=n。

如:<0>=<0.49>=0,<0.64>=<1.393>=1,<3>=3,<2.5>=<3.12>=3,…

試解決下列問題:

   (1)填空:如果<3x-2>=4,則實數(shù)x的取值范圍為     ;

(2)當(dāng),m為非負(fù)整數(shù)時,求證:

   (3)求滿足的所有非負(fù)實數(shù)x的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,拋物線y=ax2+bx+c經(jīng)過點A(﹣3,0),B(1.0),C(0, 3)。

(1)求拋物線的解析式;

(2)若點P為拋物線在第二象限上的一點,設(shè)△PAC的面積為S,求S的最大值并求出此時點P的坐標(biāo);

(3)設(shè)拋物線的頂點為D,DE⊥x軸于點E,在y軸上是否存在點M,使得△ADM是等腰直角三角形?若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案