【題目】某市為了創(chuàng)建綠色生態(tài)城市,在城東建了東州湖景區(qū),小明和小亮想測量東州湖東西兩端A、B間的距離.于是,他們?nèi)チ撕,如圖,在湖的南岸的水平地面上,選取了可直接到達點B的一點C,并測得BC350米,點A位于點C的北偏西73°方向,點B位于點C的北偏東45°方向.請你根據(jù)以上提供的信息,計算東州湖東西兩端之間AB的長.(結(jié)果精確到1米)(參考數(shù)據(jù):sin73°≈0.9563cos73≈0.2924,tan73°≈3.2709≈1.414.)

【答案】1057米.

【解析】

先根據(jù)題意得出BCD是等腰直角三角形,故可得出CDBD,再由銳角三角函數(shù)的定義得出AD的長,進而可得出結(jié)論.

∵∠BCD45°,CDAB,

∴△BCD是等腰直角三角形,

CDBD

BC350米,

CDBD350×175≈175×1.414247.45米,

ADCDtan73°≈247.45×3.2709≈809.38米,

ABAD+BD809.38+247.45≈1057(米).

答:東州湖東西兩端之間AB的長為1057米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸交于點,點,與y軸交于點C,且過點.點P、Q是拋物線上的動點.

(1)求拋物線的解析式;

(2)當點P在直線OD下方時,求面積的最大值.

(3)直線OQ與線段BC相交于點E,當相似時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究:如圖,二次函數(shù)經(jīng)過點B4,0)和點E-2-3)兩點,與x軸的另一個交點為A.點D是線段BE上的動點,過點DDFBE,交y軸于點F,交拋物線于點P

1)求出拋物線和直線BE的解析式;

2)當△DCF≌△BOC時,求出此時點D的坐標;

3)設點P的橫坐標為m

①請寫出線段PD的長度為(用含m的式子表示);

②當m為何值時,線段PD有最大值,并寫出其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%

1)設小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.

2)當銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?

3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進價×銷售量)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 在三邊互不相等的ABC中, D,E,F分別是AB,AC,BC邊的中點.連接DE,過點CCMABDE的延長線于點M,連接CDEF交于點N,則圖中全等三角形共有(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題提出(1)如圖①,在ABC中,BC6,DBC上一點,AD4,則ABC面積的最大值是   

問題探究(2)如圖②,已知矩形ABCD的周長為12,求矩形ABCD面積的最大值.

問題解決(3)如圖③,ABC是葛叔叔家的菜地示意圖,其中AB30米,BC40米,AC50米,現(xiàn)在他想利用周邊地的情況,把原來的三角形地拓展成符合條件的面積盡可能大、周長盡可能長的四邊形地,用來建魚塘.已知葛叔叔欲建的魚塘是四邊形ABCD,且滿足∠ADC60°.你認為葛叔叔的想法能否實現(xiàn)?若能,求出這個四邊形魚塘周長的最大值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AC=BC=3cm.動點P從點A出發(fā),以cm/s的速度沿AB方向運動到點B.動點Q同時從點A出發(fā),以1cm/s的速度沿折線ACCB方向運動到點B.APQ的面積為y(cm2).運動時間為x(s),則下列圖象能反映yx之間關(guān)系的是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】據(jù)新浪網(wǎng)調(diào)查,在第十二屆全國人大二中全會后,全國網(wǎng)民對政府工作報告關(guān)注度非常高,大家關(guān)注的網(wǎng)民們關(guān)注的熱點話題分別有:消費、教育、環(huán)保、反腐、及其它共五類,且關(guān)注五類熱點問題的網(wǎng)民的人數(shù)所占百分比如圖l所示,關(guān)注該五類熱點問題網(wǎng)民的人數(shù)的不完整條形統(tǒng)計如圖2所示,請根據(jù)圖中信息解答下列問題.

(1)求出圖l中關(guān)注“反腐”類問題的網(wǎng)民所占百分比x的值,并將圖2中的不完整的條形統(tǒng)計圖補充完整;

(2)為了深入探討政府工作報告,新浪網(wǎng)邀請成都市5名網(wǎng)民代表甲、乙、丙、丁、戊做客新浪訪談,且一次訪談只選2名代表,請你用列表法或畫樹狀圖的方法,求出一次所選代表恰好是甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了調(diào)查學生對垃圾分類及投放知識的了解情況,從甲、乙兩校各隨機抽取40名學生進行了相關(guān)知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進行了整理、描述和分析.下面給出了部分信息.

a.甲、乙兩校40名學生成績的頻數(shù)分布統(tǒng)計表如下:

成績x

學校

4

11

13

10

2

6

3

15

14

2

(說明:成績80分及以上為優(yōu)秀,70~79分為良好,60~69分為合格,60分以下為不合格)

b.甲校成績在這一組的是:

70 70 70 71 72 73 73 73 74 75 76 77 78

c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)如下:

學校

平均分

中位數(shù)

眾數(shù)

74.2

n

5

73.5

76

84

根據(jù)以上信息,回答下列問題:

1)寫出表中n的值;

2)在此次測試中,某學生的成績是74分,在他所屬學校排在前20名,由表中數(shù)據(jù)可知該學生是_____________校的學生(填),理由是__________

3)假設乙校800名學生都參加此次測試,估計成績優(yōu)秀的學生人數(shù).

查看答案和解析>>

同步練習冊答案