精英家教網(wǎng)如圖,設(shè)ABCDE是正五邊形,五角星ACEBD(陰影部分)的面積為1,設(shè)AC與BE的交點(diǎn)為P,BD與CE的交點(diǎn)為Q,則四邊形APQD的面積等于
 
分析:連接RQ,根據(jù)五角星的性質(zhì)可知四邊形APQR為平行四邊形,再由平行四邊形的性質(zhì)可得出△APR與△PQR面積相等,進(jìn)而可得出SAPQD=3S1+S2=
1
2
解答:精英家教網(wǎng)解:連接RQ,
∵由五角星的性質(zhì)可知四邊形APQR為平行四邊形,
∴△APR與△PQR面積相等,
∴1=6S1+2S2
∴SAPQD=3S1+S2=
1
2

故答案為:
1
2
點(diǎn)評:本題考查的是面積及等積變換,解答此題的關(guān)鍵是由五角星的性質(zhì)可知四邊形APQR為平行四邊形,再根據(jù)平行四邊形的性質(zhì)進(jìn)行解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一塊五邊形木板ABCDE是由矩形木板AFDE截去∠F后剩下的,AE=130cm,ED=100cm,BF=80cm,F(xiàn)C=40cm.現(xiàn)要在五邊形木板ABCDE上再截一塊矩形木板NPME,且點(diǎn)P在線段BC上,若設(shè)PM的長為x(cm),矩形NPME的面積為y(cm2).精英家教網(wǎng)
求:(1)y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求當(dāng)x為何值時,面積y最大,最大面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•青島模擬)同學(xué)們已經(jīng)認(rèn)識了很多正多邊形,現(xiàn)以正六邊形為例再介紹與正多邊形相關(guān)的幾個概念.如正六邊形ABCDEF各邊對稱軸的交點(diǎn)O,又稱正六邊形的中心,其中OA稱正六邊形的半徑,通常用R表示,∠AOB稱為中心角,顯然.提出問題:正多邊形內(nèi)任意一點(diǎn)到各邊距離之和與這個正多邊形的半徑R和中心角有什么關(guān)系?
探索發(fā)現(xiàn):
(1)為了解決這個問題,我們不妨從最簡單的正多邊形--正三角形入手.
如圖①,△ABC是正三角形,半徑OA=R,∠AOB是中心角,P是△ABC內(nèi)任意一點(diǎn),P到△ABC各邊距離分別為h1、h2、h3 ,確定h1+h2+h3的值與△ABC的半徑R及中心角的關(guān)系.
解:設(shè)△ABC的邊長是a,面積為S,顯然S=
1
2
a(h1+h2+h3
O為△ABC的中心,連接OA、OB、OC,它們將△ABC分成三個全等的等腰三角形,過點(diǎn)O作OM⊥AB,垂足為M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos
1
2
∠AOB=Rcos
1
2
×120°=Rcos60°,
AM=OAsin∠AOM=Rsin
1
2
∠AOB=Rsin
1
2
×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=
1
2
AB×OM=
1
2
×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
1
2
a(h1+h2+h3)=3R2sin60°cos60°
即:
1
2
×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如圖②,五邊形ABCDE是正五邊形,半徑是R,P是正五邊形ABCDE內(nèi)任意一點(diǎn),P到五邊形ABCDE各邊距離分別為h1、h2、h3、h4、h5,參照(1)的探索過程,確定h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關(guān)系.
(3)類比上述探索過程,直接填寫結(jié)論
正六邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6=
6Rcos30°
6Rcos30°

正八邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6+h7+h8=
8Rcos22.5°
8Rcos22.5°

正n邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和  h1+h2+…+hn=
nRcos
180°
n
nRcos
180°
n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

同學(xué)們已經(jīng)認(rèn)識了很多正多邊形,現(xiàn)以正六邊形為例再介紹與正多邊形相關(guān)的幾個概念.如正六邊形ABCDEF各邊對稱軸的交點(diǎn)O,又稱正六邊形的中心,其中OA稱正六邊形的半徑,通常用R表示,∠AOB稱為中心角,顯然.提出問題:正多邊形內(nèi)任意一點(diǎn)到各邊距離之和與這個正多邊形的半徑R和中心角有什么關(guān)系?
探索發(fā)現(xiàn):
(1)為了解決這個問題,我們不妨從最簡單的正多邊形--正三角形入手.
如圖①,△ABC是正三角形,半徑OA=R,∠AOB是中心角,P是△ABC內(nèi)任意一點(diǎn),P到△ABC各邊距離分別為h1、h2、h3 ,確定h1+h2+h3的值與△ABC的半徑R及中心角的關(guān)系.
解:設(shè)△ABC的邊長是a,面積為S,顯然S=數(shù)學(xué)公式a(h1+h2+h3
O為△ABC的中心,連接OA、OB、OC,它們將△ABC分成三個全等的等腰三角形,過點(diǎn)O作OM⊥AB,垂足為M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos數(shù)學(xué)公式∠AOB=Rcos數(shù)學(xué)公式×120°=Rcos60°,
AM=OAsin∠AOM=Rsin數(shù)學(xué)公式∠AOB=Rsin數(shù)學(xué)公式×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=數(shù)學(xué)公式AB×OM=數(shù)學(xué)公式×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
數(shù)學(xué)公式a(h1+h2+h3)=3R2sin60°cos60°
即:數(shù)學(xué)公式×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如圖②,五邊形ABCDE是正五邊形,半徑是R,P是正五邊形ABCDE內(nèi)任意一點(diǎn),P到五邊形ABCDE各邊距離分別為h1、h2、h3、h4、h5,參照(1)的探索過程,確定h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關(guān)系.
(3)類比上述探索過程,直接填寫結(jié)論
正六邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6=________
正八邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6+h7+h8=________
正n邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+…+hn=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年山東省青島市中考數(shù)學(xué)調(diào)研試卷(解析版) 題型:解答題

同學(xué)們已經(jīng)認(rèn)識了很多正多邊形,現(xiàn)以正六邊形為例再介紹與正多邊形相關(guān)的幾個概念.如正六邊形ABCDEF各邊對稱軸的交點(diǎn)O,又稱正六邊形的中心,其中OA稱正六邊形的半徑,通常用R表示,∠AOB稱為中心角,顯然.提出問題:正多邊形內(nèi)任意一點(diǎn)到各邊距離之和與這個正多邊形的半徑R和中心角有什么關(guān)系?
探索發(fā)現(xiàn):
(1)為了解決這個問題,我們不妨從最簡單的正多邊形--正三角形入手.
如圖①,△ABC是正三角形,半徑OA=R,∠AOB是中心角,P是△ABC內(nèi)任意一點(diǎn),P到△ABC各邊距離分別為h1、h2、h3 ,確定h1+h2+h3的值與△ABC的半徑R及中心角的關(guān)系.
解:設(shè)△ABC的邊長是a,面積為S,顯然S=a(h1+h2+h3
O為△ABC的中心,連接OA、OB、OC,它們將△ABC分成三個全等的等腰三角形,過點(diǎn)O作OM⊥AB,垂足為M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos∠AOB=Rcos×120°=Rcos60°,
AM=OAsin∠AOM=Rsin∠AOB=Rsin×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=AB×OM=×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
a(h1+h2+h3)=3R2sin60°cos60°
即:×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如圖②,五邊形ABCDE是正五邊形,半徑是R,P是正五邊形ABCDE內(nèi)任意一點(diǎn),P到五邊形ABCDE各邊距離分別為h1、h2、h3、h4、h5,參照(1)的探索過程,確定h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關(guān)系.
(3)類比上述探索過程,直接填寫結(jié)論
正六邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6=______
正八邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6+h7+h8=______
正n邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和  h1+h2+…+hn=______.

查看答案和解析>>

同步練習(xí)冊答案