(1)解:∵M是AB的中點,
∴OC⊥AB,
∵OM=MC,
∴BC=OB,
∴OB=OC=BC,
∴△OBC是等邊三角形,
∴∠OCB=60°;
(2)證明:連接OA,
∵∠AOC=2∠ABC,∠BAD=2∠ABD,
∴∠AOC=∠BAD,
∵∠AOC+∠OAB=90°,
∴∠OAD=∠AOB+∠BAD=∠OAB+∠AOC=90°,
即OA⊥AD,
∴AD是⊙O的切線.
分析:(1)由半徑OC經(jīng)過AB的中點M,根據(jù)垂徑定理的即可求得OC⊥AB,又由OM=MC,根據(jù)線段垂直平分線的性質(zhì),可得OB=BC,即可得△OBC是等邊三角形,則可得∠OCB的度數(shù);
(2)首先連接OA,由圓周角定理可得:∠AOC=2∠ABC,又由已知∠BAD=2∠ABD,即可證得∠AOC=∠BAD,繼而可求得∠OAD=90°,證得AD是⊙O的切線.
點評:此題考查了切線的判定、垂徑定理、圓周角定理以及等邊三角形的判定與性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應用.