精英家教網 > 初中數學 > 題目詳情
如圖,在Rt△ABC中,∠C=90°,斜邊AB的垂直平分線DE交AB于點D,交BC于點E,且AE平分∠BAC,下列關系式不成立的是( 。
分析:根據線段垂直平分線上的點到線段兩端點的距離相等可得AE=BE,根據等邊對等角可得∠BAE=∠B,然后利用直角三角形兩銳角互余列式求出∠CAE=∠BAE=∠B=30°,根據直角三角形30°角所對的直角邊等于斜邊的一半可得AE=2CE,BE=2DE,根據角平分線上的點到角的兩邊的距離相等可得DE=EC,然后對各選項分析判斷后利用排除法求解.
解答:解:∵DE是AB的垂直平分線,
∴AE=BE,
∴∠BAE=∠B,
∵AE平分∠BAC,
∴∠CAE=∠BAE,
∵∠C=90°,
∴∠CAE=∠BAE=∠B=30°,
A、在Rt△ACE中,AE=2CE,故本選項正確;
B、∠B=∠CAE正確,故本選項錯誤;
C、∵∠DEA=90°-30°=60°,2∠B=2×30°=60°,
∴∠DEA=2∠B,故本選項錯誤;
D、在Rt△BDE中,BE=2DE,
∵AE平分∠BAC,∠C=90°,DE⊥AB,
∴DE=EC,
∴BC=EC+BE=EC+2EC=3EC,故本選項錯誤.
故選A.
點評:本題考查了線段垂直平分線上的點到線段兩端點的距離相等的性質,角平分線上的點到角的兩邊的距離相等的性質,等邊對等角的性質,以及三角形的內角和定理,熟記各性質是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•莆田質檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設AD=x,CF=y.求y與x之間函數解析式,并寫出函數的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數關系式.

查看答案和解析>>

同步練習冊答案