如圖,⊙O中,AB=1,圓周角∠ACB=30°,則⊙O的半徑為   
【答案】分析:由題意知,弦長為1所對的圓周角為30°,則弦對的圓心角為60°,由于弦與圓心構(gòu)成的三角形是等腰三角形,所以當(dāng)圓心角為60°,這個三角形是等邊三角形,邊長已知,半徑不難求出.
解答:解:連接OA和OB,
∵AB=1,圓周角∠ACB=30°,
∴弦AB所對的圓心角∠AOB=60°,
∵OA=OB,
∴三角形AOB為等邊三角形,
∴半徑=AB=1.
故答案為:1.
點(diǎn)評:本題主要考查了圓周角定理和含有30度得直角三角形的知識點(diǎn),利用了:(1)同一弦所對的圓周角是所對的圓心角的一半;(2)等邊三角形的判定:有一角為60°的等腰三角形是等邊三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,△ABC中,AB=AC,AD⊥BC,D為垂足,點(diǎn)E、F分別是AC,AB上的點(diǎn),要使DF=DE,則需要補(bǔ)充的條件是
DF⊥AB,DE⊥AC或BF=CE或AF=AE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC中,AB>AC,AD是BC邊上的高,F(xiàn)是BC的中點(diǎn),EF⊥BC交AB于E,若BD:DC=3:2,則BE:AB=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•順義區(qū)二模)如圖,△ABC中,AB=AC=2,若P為BC的中點(diǎn),則AP2+BP•PC的值為
4
4
;若BC邊上有100個不同的點(diǎn)P1,P2,…,P100,記mi=APi2+BPi•PiC(i=1,2,…,100),則m1+m2+…+m100的值為
400
400

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,AB=BC,∠ABC=90°,△ABC繞B點(diǎn)順時針旋轉(zhuǎn)至△A1BC1位置,設(shè)旋轉(zhuǎn)角為α,0°<α<90°
(1)求證:EA1=FC;
(2)當(dāng)α=
45°
45°
時,四邊形BC1DA是菱形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田)如圖,?ABCD中,AB=2,以點(diǎn)A為圓心,AB為半徑的圓交邊BC于點(diǎn)E,連接DE、AC、AE.
(1)求證:△AED≌△DCA;
(2)若DE平分∠ADC且與⊙A相切于點(diǎn)E,求圖中陰影部分(扇形)的面積.

查看答案和解析>>

同步練習(xí)冊答案