如圖所示,在平面直角坐標系中,矩形OABC的邊OA、OC分別在x軸、y軸的正半軸上,且OA=,OC=1.矩形OABC繞點B按順時針方向旋轉(zhuǎn)60°后得到矩形DFBE.點A的對應點為點F,點O的對應點為點D,點C的對應點為點E,且點D恰好在y軸上,二次函數(shù)y=ax2+bx+2的圖象過E、B兩點.
(1)請直接寫出點B和點D的坐標;
(2)求二次函數(shù)的解析式;
(3)在x軸上方是否存在點P,點Q,使以點O、A、P、Q為頂點的平行四邊形的面積是矩形OABC面積的2倍,且點P在拋物線上?若存在,求出點P,點Q的坐標;若不存在,請說明理由.
【答案】分析:(1)根據(jù)OA=,OC=1,可得出點B的坐標,根據(jù)函數(shù)解析式可得出點D的坐標;
(2)過點E作EM⊥于BC點M,根據(jù)旋轉(zhuǎn)角度可得出∠EBM=60°,結(jié)合BE=,可得出點E的坐標,將點E和點B的坐標代入可得出二次函數(shù)解析式;
(3)設點P的坐標為(x,-x2+x+2),然后根據(jù)平行四邊形OAPQ的面積是矩形OABC面積的2倍,可得出x的值,繼而可求出點P的坐標及點Q的坐標.
解答:解:(1)∵OA=,OC=1,
∴點B的坐標為(,1),
根據(jù)二次函數(shù)解析式為y=ax2+bx+2,可得點D的坐標為(0,2);
綜上可得點B的坐標為(,1),點D的坐標為(0,2).

(2)過點E作EM⊥于BC點M,

∵∠EBM=60°,BE=,
∴BM=,EM=,
∴CM=BC-BM=-=,
∴點E的坐標為(,),
將點E及點B的坐標代入可得:
解得:,
故函數(shù)解析式為y=-x2+x+2;

(3)存在.
設點P的坐標為(x,-x2+x+2),
∵平行四邊形OAPQ的面積是矩形OABC面積的2倍,
×(-x2+x+2)=2
解得:x1=,x2=0,
當x=0時,點P的坐標為(0,2),此時點Q的坐標為(,2)或(-,2);
當x=時,點P的坐標為(,2),此時點Q的坐標為(,2)或(-,2);
點評:本題考查了二次函數(shù)綜合題,涉及了待定系數(shù)法求函數(shù)解析式、旋轉(zhuǎn)角度、解直角三角形及平行四邊形的性質(zhì),綜合性較強,解答本題的關鍵是熟練掌握各個知識點的內(nèi)容,仔細理解題意,將所學的知識融會貫通,難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖所示,在平面直角坐標系中,一次函數(shù)y=kx+1的圖象與反比例函數(shù)y=
9x
的圖象在第一象限相精英家教網(wǎng)交于點A,過點A分別作x軸、y軸的垂線,垂足為點B、C.如果四邊形OBAC是正方形,求一次函數(shù)的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、如圖所示,在平面直角坐標系中,點A、B的坐標分別為(-2,0)和(2,0).月牙①繞點B順時針旋轉(zhuǎn)90°得到月牙②,則點A的對應點A′的坐標為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標系中,一顆棋子從點P處開始依次關于點A,B,C作循環(huán)對稱跳動,即第一次從點P跳到關于點A的對稱點M處,第二次從點M跳到關于點B的對稱點N處,第三次從點N跳到關于點C的對稱點處,…如此下去.
(1)在圖中標出點M,N的位置,并分別寫出點M,N的坐標:
 

(2)請你依次連接M、N和第三次跳后的點,組成一個封閉的圖形,并計算這個圖形的面積;
(3)猜想一下,經(jīng)過第2009次跳動之后,棋子將落到什么位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標系xoy中,有一組對角線長分別為1,2,3的正方形A1B1C1O、A2B2C2B1、A3B3C3B2,其對角線OB1、B1B2、B2 B3依次放置在y軸上(相鄰頂點重合),依上述排列方式,對角線長為n的第n個正方形的頂點An的坐標為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+3(a≠0)經(jīng)過A(-1,0)、B(3,0)兩點,拋物線與y軸交點為C,其頂點為D,連接BD,點P是線段BD上一個動點(不與B、D重合),過點P作y軸的垂線,垂足為E,連接精英家教網(wǎng)BE.
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)如果P點的坐標為(x,y),△PBE的面積為s,求s與x的函數(shù)關系式,寫出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當s取得最大值時,過點P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應點為P',請直接寫出P'點坐標,并判斷點P'是否在該拋物線上.

查看答案和解析>>

同步練習冊答案