精英家教網 > 初中數學 > 題目詳情
(2013•福州質檢)如圖,邊長為6的等邊三角形ABC中,E是對稱軸AD上的一個動點,連接EC,將線段EC繞點C逆時針旋轉60°得到FC,連接DF.則在點E運動過程中,DF的最小值是
1.5
1.5
分析:取AC的中點G,連接EG,根據等邊三角形的性質可得CD=CG,再求出∠DCF=∠GCE,根據旋轉的性質可得CE=CF,然后利用“邊角邊”證明△DCF和△GCE全等,再根據全等三角形對應邊相等可得DF=EG,然后根據垂線段最短可得EG⊥AD時最短,再根據∠CAD=30°求解即可.
解答:解:如圖,取AC的中點G,連接EG,
∵旋轉角為60°,
∴∠ECD+∠DCF=60°,
又∵∠ECD+∠GCE=∠ACB=60°,
∴∠DCF=∠GCE,
∵AD是等邊△ABC的對稱軸,
∴CD=
1
2
BC,
∴CD=CG,
又∵CE旋轉到CF,
∴CE=CF,
在△DCF和△GCE中,
CE=CF
∠DCF=∠GCE
CD=CG
,
∴△DCF≌△GCE(SAS),
∴DF=EG,
根據垂線段最短,EG⊥AD時,EG最短,即DF最短,
此時∵∠CAD=
1
2
×60°=30°,AG=
1
2
AC=
1
2
×6=3,
∴EG=
1
2
AG=
1
2
×3=1.5,
∴DF=1.5.
故答案為:1.5.
點評:本題考查了旋轉的性質,等邊三角形的性質,全等三角形的判定與性質,垂線段最短的性質,作輔助線構造出全等三角形是解題的關鍵,也是本題的難點.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•福州質檢)一元二次方程x2+4=0根的情況是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•福州質檢)已知一個函數中,兩個變量x與y的部分對應值如下表:
x -2-
3
-2+
3
2
-1
2
+1
y -2+
3
-2-
3
2
+1
2
-1
如果這個函數圖象是軸對稱圖形,那么對稱軸可能是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•福州質檢)如圖,由6個形狀、大小完全相同的小矩形組成矩形網格.小矩形的頂點稱為這個矩形網格的格點.已知小矩形較短邊長為1,△ABC的頂點都在格點上.
(1)格點E、F在BC邊上,
BE
AF
的值是
1
2
1
2
;
(2)按要求畫圖:找出格點D,連接CD,使∠ACD=90°;
(3)在(2)的條件下,連接AD,求tan∠BAD的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•福州質檢)如圖,Rt△ABC中,∠C=90°,AC=BC=8,DE=2,線段DE在AC邊上運動(端點D從點A開始),速度為每秒1個單位,當端點E到達點C時運動停止.F為DE中點,MF⊥DE交AB于點M,MN∥AC交BC于點N,連接DM、ME、EN.設運動時間為t秒.
(1)求證:四邊形MFCN是矩形;
(2)設四邊形DENM的面積為S,求S關于t的函數解析式;當S取最大值時,求t的值;
(3)在運動過程中,若以E、M、N為頂點的三角形與△DEM相似,求t的值.

查看答案和解析>>

同步練習冊答案