分析:(1)首先由OC、OA的數(shù)量關(guān)系確定點(diǎn)C的坐標(biāo),即可利用待定系數(shù)法求出拋物線的解析式.
(2)由(1)的拋物線解析式可得點(diǎn)B的坐標(biāo),而點(diǎn)C的坐標(biāo)已經(jīng)求得,由待定系數(shù)法求解即可.
(3)①首先要明確正方形ODEF和△OBC重合部分的形狀:當(dāng)點(diǎn)D在△OBC內(nèi)部時(shí),兩者的重合部分是矩形;當(dāng)點(diǎn)D在△OBC外部時(shí),兩者的重合部分是五邊形,其面積可由正方形的面積減去△DGH的面積(G、H分別為ED、OD和線段BC的交點(diǎn)).在判斷t的取值范圍時(shí),要注意一個(gè)“關(guān)鍵點(diǎn)”:點(diǎn)D位于線段BC上時(shí).
②根據(jù)①的函數(shù)性質(zhì)即可得到答案,要注意未知數(shù)的取值范圍.
(4)若存在以A、M、N、P為頂點(diǎn)的平行四邊形,那么應(yīng)分:AM
PN或AN
PM兩種情況,由于AM在x軸上,結(jié)合平行四邊形的特點(diǎn)可知:無論哪種情況,點(diǎn)N到x軸的距離都等于點(diǎn)P到x軸的距離,根據(jù)這個(gè)特點(diǎn)可確定點(diǎn)M、N的坐標(biāo).
解答:解:(1)∵A(-1,0),|OC|=3|OA|
∴C(0,-3)
∵拋物線經(jīng)過A(-1,0),
C(0,-3)
∴
∴
∴y=x
2-2x-3.
(2)由(1)的拋物線知:點(diǎn)B(3,0);
設(shè)直線BC的解析式為:y=kx-3,代入B點(diǎn)坐標(biāo),得:
3k-3=0,解得 k=1
∴直線BC的函數(shù)表達(dá)式為y=x-3.
(3)當(dāng)正方形ODEF的頂點(diǎn)D運(yùn)動(dòng)到直線BC上時(shí),設(shè)D點(diǎn)的坐標(biāo)為(m,-2),
根據(jù)題意得:-2=m-3,∴m=1.
①當(dāng)0<t≤1時(shí),正方形和△OBC的重合部分是矩形;
∵OO
1=t,OD=2
∴S
1=2t;
當(dāng)1<t≤2時(shí),正方形和△OBC的重合部分是五邊形,如右圖;
∵OB=OC=3,∴△OBC、△D
1GH都是等腰直角三角形,∴D
1G=D
1H=t-1;
S
2=S
矩形DD1O1O-S
△D1HG=2t-
×(t-1)
2=-
t
2+3t-
.
②由①知:
當(dāng)0<t≤1時(shí),S=2t的最大值為2;
當(dāng)1<t≤2時(shí),S=-
t
2+3t-
=-
(t-3)
2+4,由于未知數(shù)的取值范圍在對(duì)稱軸左側(cè),且拋物線的開口向下;
∴當(dāng)t=2時(shí),函數(shù)有最大值,且值為 S=-
+4=
>2.
綜上,當(dāng)t=2秒時(shí),S有最大值,最大值為
.
(4)由(2)知:點(diǎn)P(1,-2).假設(shè)存在符合條件的點(diǎn)M;
①當(dāng)AM
PN時(shí),點(diǎn)N、P的縱坐標(biāo)相同,即點(diǎn)N的縱坐標(biāo)為-2,代入拋物線的解析式中有:
x
2-2x-3=-2,解得 x=1±
;
∴AM=NP=
,
∴M
1(-
-1,0)、M
2(
-1,0).
②當(dāng)AN
PM時(shí),平行四邊形的對(duì)角線PN、AM互相平分;
設(shè)M(m,0),則 N(m-2,2),代入拋物線的解析式中,有:
(m-2)
2-2(m-2)-3=2,解得 m=3±
;
∴M
3(3-
,0)、M
4(3+
,0).
綜上,存在符合條件的M點(diǎn),且坐標(biāo)為:
M
1(-
-1,0)、M
2(
-1,0)、M
3(3-
,0)、M
4(3+
,0).