(2012•丹東)已知拋物線y=ax2-2ax+c與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)是(-1,0),O是坐標(biāo)原點(diǎn),且|OC|=3|OA|
(1)求拋物線的函數(shù)表達(dá)式;
(2)直接寫出直線BC的函數(shù)表達(dá)式;
(3)如圖1,D為y軸的負(fù)半軸上的一點(diǎn),且OD=2,以O(shè)D為邊作正方形ODEF.將正方形ODEF以每秒1個(gè)單位的速度沿x軸的正方向移動(dòng),在運(yùn)動(dòng)過程中,設(shè)正方形ODEF與△OBC重疊部分的面積為s,運(yùn)動(dòng)的時(shí)間為t秒(0<t≤2).
求:①s與t之間的函數(shù)關(guān)系式;
②在運(yùn)動(dòng)過程中,s是否存在最大值?如果存在,直接寫出這個(gè)最大值;如果不存在,請(qǐng)說明理由.
(4)如圖2,點(diǎn)P(1,k)在直線BC上,點(diǎn)M在x軸上,點(diǎn)N在拋物線上,是否存在以A、M、N、P為頂點(diǎn)的平行四邊形?若存在,請(qǐng)直接寫出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
分析:(1)首先由OC、OA的數(shù)量關(guān)系確定點(diǎn)C的坐標(biāo),即可利用待定系數(shù)法求出拋物線的解析式.
(2)由(1)的拋物線解析式可得點(diǎn)B的坐標(biāo),而點(diǎn)C的坐標(biāo)已經(jīng)求得,由待定系數(shù)法求解即可.
(3)①首先要明確正方形ODEF和△OBC重合部分的形狀:當(dāng)點(diǎn)D在△OBC內(nèi)部時(shí),兩者的重合部分是矩形;當(dāng)點(diǎn)D在△OBC外部時(shí),兩者的重合部分是五邊形,其面積可由正方形的面積減去△DGH的面積(G、H分別為ED、OD和線段BC的交點(diǎn)).在判斷t的取值范圍時(shí),要注意一個(gè)“關(guān)鍵點(diǎn)”:點(diǎn)D位于線段BC上時(shí).
②根據(jù)①的函數(shù)性質(zhì)即可得到答案,要注意未知數(shù)的取值范圍.
(4)若存在以A、M、N、P為頂點(diǎn)的平行四邊形,那么應(yīng)分:AM
.
PN或AN
.
PM兩種情況,由于AM在x軸上,結(jié)合平行四邊形的特點(diǎn)可知:無論哪種情況,點(diǎn)N到x軸的距離都等于點(diǎn)P到x軸的距離,根據(jù)這個(gè)特點(diǎn)可確定點(diǎn)M、N的坐標(biāo).
解答:解:(1)∵A(-1,0),|OC|=3|OA|
∴C(0,-3)
∵拋物線經(jīng)過A(-1,0),
C(0,-3)
c=-3
(-1)2×a-2a×(-1)+c=0

a=1
c=-3

∴y=x2-2x-3.

(2)由(1)的拋物線知:點(diǎn)B(3,0);
設(shè)直線BC的解析式為:y=kx-3,代入B點(diǎn)坐標(biāo),得:
3k-3=0,解得 k=1
∴直線BC的函數(shù)表達(dá)式為y=x-3.

(3)當(dāng)正方形ODEF的頂點(diǎn)D運(yùn)動(dòng)到直線BC上時(shí),設(shè)D點(diǎn)的坐標(biāo)為(m,-2),
根據(jù)題意得:-2=m-3,∴m=1.
①當(dāng)0<t≤1時(shí),正方形和△OBC的重合部分是矩形;
∵OO1=t,OD=2
∴S1=2t;
當(dāng)1<t≤2時(shí),正方形和△OBC的重合部分是五邊形,如右圖;
∵OB=OC=3,∴△OBC、△D1GH都是等腰直角三角形,∴D1G=D1H=t-1;
S2=S矩形DD1O1O-S△D1HG=2t-
1
2
×(t-1)2=-
1
2
t2+3t-
1
2

②由①知:
當(dāng)0<t≤1時(shí),S=2t的最大值為2;
當(dāng)1<t≤2時(shí),S=-
1
2
t2+3t-
1
2
=-
1
2
(t-3)2+4,由于未知數(shù)的取值范圍在對(duì)稱軸左側(cè),且拋物線的開口向下;
∴當(dāng)t=2時(shí),函數(shù)有最大值,且值為 S=-
1
2
+4=
7
2
>2.
綜上,當(dāng)t=2秒時(shí),S有最大值,最大值為 
7
2


(4)由(2)知:點(diǎn)P(1,-2).假設(shè)存在符合條件的點(diǎn)M;
①當(dāng)AM
.
PN時(shí),點(diǎn)N、P的縱坐標(biāo)相同,即點(diǎn)N的縱坐標(biāo)為-2,代入拋物線的解析式中有:
x2-2x-3=-2,解得 x=1±
2
;
∴AM=NP=
2
,
∴M1(-
2
-1,0)、M2
2
-1,0).
②當(dāng)AN
.
PM時(shí),平行四邊形的對(duì)角線PN、AM互相平分;
設(shè)M(m,0),則 N(m-2,2),代入拋物線的解析式中,有:
(m-2)2-2(m-2)-3=2,解得 m=3±
6
;
∴M3(3-
6
,0)、M4(3+
6
,0).
綜上,存在符合條件的M點(diǎn),且坐標(biāo)為:
M1(-
2
-1,0)、M2
2
-1,0)、M3(3-
6
,0)、M4(3+
6
,0).
點(diǎn)評(píng):該題是難度較大的二次函數(shù)綜合題,包涵了:函數(shù)解析式的確定、圖形面積的解法、平行四邊形的性質(zhì)等重要知識(shí).(3)題是圖形的動(dòng)點(diǎn)問題,要把握住“關(guān)鍵點(diǎn)”,本著“不重不漏”的原則分段討論.(4)題雖然難度不大,但涉及的情況較多,要結(jié)合圖形分類討論,爭(zhēng)取做到不漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•丹東)已知:點(diǎn)C、A、D在同一條直線上,∠ABC=∠ADE=α,線段BD、CE交于點(diǎn)M.
(1)如圖1,若AB=AC,AD=AE
①問線段BD與CE有怎樣的數(shù)量關(guān)系?并說明理由;
②求∠BMC的大。ㄓ忙帘硎荆
(2)如圖2,若AB=BC=kAC,AD=ED=kAE,則線段BD與CE的數(shù)量關(guān)系為
BD=kCE
BD=kCE
,∠BMC=
90°-
1
2
α
90°-
1
2
α
(用α表示);
(3)在(2)的條件下,把△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)180°,在備用圖中作出旋轉(zhuǎn)后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡),連接EC并延長(zhǎng)交BD于點(diǎn)M.則∠BMC=
90°+
1
2
α
90°+
1
2
α
(用α表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•丹東)如圖,已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)E、F分別在邊AB、BC上,且AE=BF=1,CE、DF交于點(diǎn)O.下列結(jié)論:①∠DOC=90°,②OC=OE,③tan∠OCD=
4
3
,④S△ODC=S四邊形BEOF中,正確的有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•丹東)已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度)
(1)畫出△ABC向下平移4個(gè)單位得到的△A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);
(2)以點(diǎn)B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2:1,并直接寫出C2點(diǎn)的坐標(biāo)及△A2BC2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•丹東)暴雨過后,某地遭遇山體滑坡,武警總隊(duì)派出一隊(duì)武警戰(zhàn)士前往搶險(xiǎn).半小時(shí)后,第二隊(duì)前去支援,平均速度是第一隊(duì)的1.5倍,結(jié)果兩隊(duì)同時(shí)到達(dá).已知搶險(xiǎn)隊(duì)的出發(fā)地與災(zāi)區(qū)的距離為90千米,兩隊(duì)所行路線相同,問兩隊(duì)的平均速度分別是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案