某服裝公司試銷一種成本為每件50元的T恤衫,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),又不高于每件70元,試銷中銷售量(件)與銷售單價(jià)(元)的關(guān)系可以近似的看作一次函數(shù)(如圖).

(1)求之間的函數(shù)關(guān)系式;

(2)設(shè)公司獲得的總利潤為元,求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;根據(jù)題意判斷:當(dāng)取何值時(shí),的值最大?最大值是多少?(總利潤總銷售額總成本)

 


解:(1)設(shè)

∵函數(shù)圖象經(jīng)過點(diǎn)(60,400)和(70,300)

  解得

(2)

(50≤x≤70)

,<0

∴函數(shù)圖象開口向下,對稱軸是直線x=75

∵50≤x≤70,此時(shí)yx的增大而增大

∴當(dāng)x=70時(shí),

注:利用增減性找最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某服裝公司試銷一種成本為每件50元的T恤衫,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),又不高于每件70元,試銷中銷售量y(件)與銷售單價(jià)x(元)的關(guān)系可以近似的看作一次函數(shù)(如圖).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)公司獲得的總利潤(總利潤=總銷售額-總成本)為P元,求P與x之精英家教網(wǎng)間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:當(dāng)x取何值時(shí),P的值最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2010年4月10日我市某服裝公司試銷一種成本為50元每件的T恤衫,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),每件的利潤率不得高于40%,銷售中發(fā)現(xiàn)售價(jià)為60元時(shí)每天能售出400件,單價(jià)每提高1元就少銷售10件.設(shè)銷售量為 y銷售單價(jià)為 x.
(1)求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)時(shí)值青海玉樹地震,為發(fā)揚(yáng)中華民族“一方有難,八方支援”的偉大民族精神,公司決定捐出一日最大利潤,請問該種T恤應(yīng)該如何定價(jià)才能使公司捐出達(dá)到最多,最多能捐出多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第26章《二次函數(shù)》中考題集(22):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

某服裝公司試銷一種成本為每件50元的T恤衫,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),又不高于每件70元,試銷中銷售量y(件)與銷售單價(jià)x(元)的關(guān)系可以近似的看作一次函數(shù)(如圖).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)公司獲得的總利潤(總利潤=總銷售額-總成本)為P元,求P與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:當(dāng)x取何值時(shí),P的值最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》常考題集(19):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某服裝公司試銷一種成本為每件50元的T恤衫,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),又不高于每件70元,試銷中銷售量y(件)與銷售單價(jià)x(元)的關(guān)系可以近似的看作一次函數(shù)(如圖).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)公司獲得的總利潤(總利潤=總銷售額-總成本)為P元,求P與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:當(dāng)x取何值時(shí),P的值最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(22):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某服裝公司試銷一種成本為每件50元的T恤衫,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),又不高于每件70元,試銷中銷售量y(件)與銷售單價(jià)x(元)的關(guān)系可以近似的看作一次函數(shù)(如圖).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)公司獲得的總利潤(總利潤=總銷售額-總成本)為P元,求P與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:當(dāng)x取何值時(shí),P的值最大,最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案