精英家教網 > 初中數學 > 題目詳情
(2009•棗莊)如圖,在平面直角坐標系中,點C(-3,0),點A、B分別在x軸、y軸的正半軸上,且滿足+|OA-1|=0.
(1)求點A、點B的坐標;
(2)若點P從C點出發(fā),以每秒1個單位的速度沿線段CB由C向B運動,連接AP,設△ABP的面積為S,點P的運動時間為t秒,求S與t的函數關系式;
(3)在(2)的條件下,是否存在點P,使以點A,B,P為頂點的三角形與△AOB相似?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

【答案】分析:(1)根據足+|OA-1|=0.可求得OB=,OA=1,根據圖象可知A(1,0),B(0,).
(2)在直角三角形中的勾股定理和動點運動的時間和速度分別把相關的線段表示出來,設CP=t,過P作PQ⊥CA于Q,由△CPQ∽△CBO,易得PQ=.S=S△ABC-S△APC=2-t.
(3)直接先根據相似存在分別計算對應的p點坐標,可知滿足條件的有兩個.P1(-3,0),P2(-1,).
解答:解:(1)∵+|OA-1|=0,
∴OB2-3=0,OA-1=0.
∴OB=,OA=1.(1分)
點A,點B分別在x軸,y軸的正半軸上,
∴A(1,0),B(0,).(2分)

(2)由(1),得AC=4,,,
∴AB2+BC2=22+(22=16=AC2
∴△ABC為直角三角形,∠ABC=90°.(4分)
設CP=t,過P作PQ⊥CA于Q,由△CPQ∽△CBO,易得PQ=,
∴S=S△ABC-S△APC==-t(0≤t<).(7分)
(說明:不寫t的范圍不扣分)

(3)存在,滿足條件的有兩個.
P1(-3,0),(8分)
P2(-1,).(10分)
點評:本題考查了非負數的性質,相似三角形的判定,勾股定理和直角三角形的判定等知識點.利用非負數的性質求算出線段的長度是解題的關鍵之一.要會熟練地運用這些性質解題.
練習冊系列答案
相關習題

科目:初中數學 來源:2011年河南省新鄉(xiāng)市第三十中學中考數學模擬試卷(解析版) 題型:解答題

(2009•棗莊)如圖,拋物線的頂點為A(2,1),且經過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)在拋物線上求點M,使△MOB的面積是△AOB面積的3倍;
(3)連接OA,AB,在x軸下方的拋物線上是否存在點N,使△OBN與△OAB相似?若存在,求出N點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:2011年中考數學總復習專題:解直角三角形(解析版) 題型:解答題

(2009•棗莊)如圖,拋物線的頂點為A(2,1),且經過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)在拋物線上求點M,使△MOB的面積是△AOB面積的3倍;
(3)連接OA,AB,在x軸下方的拋物線上是否存在點N,使△OBN與△OAB相似?若存在,求出N點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:2011年中考復習專項訓練《方程》(解析版) 題型:解答題

(2009•棗莊)如圖,拋物線的頂點為A(2,1),且經過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)在拋物線上求點M,使△MOB的面積是△AOB面積的3倍;
(3)連接OA,AB,在x軸下方的拋物線上是否存在點N,使△OBN與△OAB相似?若存在,求出N點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年福建省廈門市湖里區(qū)初三數學第二次適應性考試(解析版) 題型:解答題

(2009•棗莊)如圖,拋物線的頂點為A(2,1),且經過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)在拋物線上求點M,使△MOB的面積是△AOB面積的3倍;
(3)連接OA,AB,在x軸下方的拋物線上是否存在點N,使△OBN與△OAB相似?若存在,求出N點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:2007年江蘇省南通市中考數學試卷(解析版) 題型:選擇題

(2009•棗莊)如圖,把直線y=-2x向上平移后得到直線AB,直線AB經過點(a,b),且2a+b=6,則直線AB的解析式是( )

A.y=-2x-3
B.y=-2x-6
C.y=-2x+3
D.y=-2x+6

查看答案和解析>>

同步練習冊答案