解方程:(1)數(shù)學(xué)公式;
(2)用配方法解方程:x2-6x+5=0.

解:(1)原式=
=
=
(2)∵x2-6x=-5
x2-6x+9=-5+9,
∴(x-3)2=4,
∴x-3=±2,
解得x1=5,x2=1.
分析:(1)首先把每個(gè)二次根式化簡(jiǎn),然后合并同類二次根式即可;
(2)首先移項(xiàng),把方程變形為x2-6x=-5的形式,方程兩邊同時(shí)加上一次項(xiàng)系數(shù)的一半,則方程的左邊是完全平方式,右邊是常數(shù),然后利用直接開平方法即可求解.
點(diǎn)評(píng):配方法的一般步驟:
(1)把常數(shù)項(xiàng)移到等號(hào)的右邊;
(2)把二次項(xiàng)的系數(shù)化為1;
(3)等式兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.
選擇用配方法解一元二次方程時(shí),最好使方程的二次項(xiàng)的系數(shù)為1,一次項(xiàng)的系數(shù)是2的倍數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、解方程x2-|x|-2=0,
解:1.當(dāng)x≥0時(shí),原方程化為x2-x-2=0,解得:x1=2,x2=-1[不合題意,舍去].
2.當(dāng)x<o(jì)時(shí),原方程化為:x2+x-2=0,解得:x1=1,(不合題意,舍去)x2=-2.所以原方程的根為:x1=2,x2=-2
請(qǐng)參照例題解方程:x2-|x-1|-1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)解方程:4(x-1)=1-x
(2)解方程:
x+1
2
-
2-3x
3
=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程:
x-
x-1
2
=
2
3
-
x+2
3

解:去分母,得6x-3x+1=4-2x+4…①
即-3x+1=-2x+8…②
移項(xiàng),得-3x+2x=8-1…③
合并同類項(xiàng),得-x=7…④
∴x=-7…⑤
上述解方程的過程中,是否有錯(cuò)誤?答:
 
;如果有錯(cuò)誤,則錯(cuò)在
 
步.如果上述解方程有錯(cuò)誤,請(qǐng)你給出正確的解題過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算與解方程:
(1)
3-x
2x-4
÷(x+2-
5
x-2
)

(2)
x
x-y
y2
x+y
-
x4y
x4-y4
÷
x2
x2+y2
;
(3)
5
2x+3
=
3
x-1
;
(4)
x
x+2
-
x+2
x-2
=
8
x2-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算下列各題:
(1)先化簡(jiǎn)再求值:
x2+x
x
÷(x+1)+
x2-x-2
x-2
,(其中x=-3).
(2)解方程
1
x+1
+
2
x-1
=
4
x2-1

查看答案和解析>>

同步練習(xí)冊(cè)答案