【題目】如圖,正方形ABCD內(nèi)接于⊙O,M為中點(diǎn),連接BM,CM.
(1)求證:BM=CM;
(2)當(dāng)⊙O的半徑為2時(shí),求的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2).
【解析】試題分析:(1)由四邊形ABCD是正方形,得到AB=CD,從而有,進(jìn)一步得到,從而得到結(jié)論;
(2)連接OM,OB,OC.由,得到∠BOM=∠COM,由正方形ABCD內(nèi)接于⊙O,得到∠BOC=90,進(jìn)而得到∠BOM=135°,由弧長(zhǎng)公式即可得到結(jié)論.
試題解析:(1)∵四邊形ABCD是正方形,∴AB=CD,∴,∵M 為中點(diǎn),∴,∴,∴BM=CM;
(2)連接OM,OB,OC.∵,∴∠BOM=∠COM,∵正方形ABCD內(nèi)接于⊙O,∴∠BOC=360°÷4=90°,∴∠BOM=135°,∴= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的函數(shù)y=(2﹣a)x2﹣x是二次函數(shù),則a的取值范圍是( )
A.a≠0
B.a≠2
C.a<2
D.a>2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)有理數(shù)的倒數(shù)是它本身,這個(gè)數(shù)是( )
A.0
B.1
C.﹣1
D.1或﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在平行四邊形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,過(guò)點(diǎn)O的直線EF分別與AD、BC交于點(diǎn)E、F,EF⊥AC,連結(jié)AF、CE.
(1)求證:OE=OF;
(2)請(qǐng)判斷四邊形AECF是什么特殊四邊形,請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)多邊形除了一個(gè)內(nèi)角外,其余各內(nèi)角之和是2570°,則這個(gè)角是( )
A. 90° B. 15° C. 120° D. 130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)角的度數(shù)比它的余角的度數(shù)大20°,則這個(gè)角的度數(shù)是( ).
A. 20° B. 55° C. 45° D. 35°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是摩天輪的圓心,長(zhǎng)為110米的AB是其垂直地面的直徑,小瑩在地面C點(diǎn)處利用測(cè)角儀測(cè)得摩天輪的最高點(diǎn)A的仰角為33°,測(cè)得圓心O的仰角為21°,則小瑩所在C點(diǎn)到直徑AB所在直線的距離約為(tan33°≈0.65,tan21°≈0.38)( 。
A. 169米 B. 204米 C. 240米 D. 407米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班有48位同學(xué),在一次數(shù)學(xué)檢測(cè)中,分?jǐn)?shù)只取整數(shù),統(tǒng)計(jì)其成績(jī),繪制出頻數(shù)分布直方圖(橫半軸表示分?jǐn)?shù),把50.5分到100.5分之間的分?jǐn)?shù)分成5組,組距是10分,縱半軸表示頻數(shù))如圖所示,從左到右的小矩形的高度比是1:3:6:4:2,則由圖可知,其中分?jǐn)?shù)在70.5~80.5之間的人數(shù)是( 。
A.9
B.18
C.12
D.6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com