直角坐標(biāo)系中,已知點(diǎn)A(-1,2)、點(diǎn)B(5,4),軸上一點(diǎn)P()滿足PA+PB最短,則           .

【解析】如圖,過B點(diǎn)作BD⊥x軸,垂足為D,連接OB,

∵B(n,-2),∴BD=2。

在Rt△OBD中,tan∠BOC= ,即 ,

解得OD=5。

又∵B點(diǎn)在第四象限,∴B(5,-2)。

將B(5,-2)代入 中,得k=xy=-10。

∴反比例函數(shù)解析式為。

將A(-2,m)代入中,得m=5,∴A(-2,5),

將A(-2,5),B(5,-2)代入中,

,解得。

∴一次函數(shù)解析式為。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,已知點(diǎn)P0的坐標(biāo)為(1,0),將線段OP0按逆時(shí)針方向旋轉(zhuǎn)45°,再將其長(zhǎng)度伸長(zhǎng)為OP0的2倍,得到線段OP1;又將線段OP1按逆時(shí)針方向旋轉(zhuǎn)45°,長(zhǎng)度伸長(zhǎng)為OP1的2倍,得到線段OP2;如此下去,得到線段OP3,OP4,…,OPn(n為正整數(shù)).我們規(guī)定:把點(diǎn)Pn(xn,yn)(n=0,1,2,3,…)的橫坐標(biāo)xn、縱坐標(biāo)yn都取絕對(duì)值后得到的新坐標(biāo)(|xn|,|yn|)稱之為點(diǎn)Pn的“絕對(duì)坐標(biāo)”.則Pn的“絕對(duì)坐標(biāo)”為( 。
A、(2n-1
2
,2n-1
2
)或(2n,0)
B、(2n,0)或(0,2n
C、(0,2n)或(2n-1
2
2n-1
2
D、(2n-1
2
,2n-1
2
)或(2n,0)或(0,2n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,已知點(diǎn)A(-3,2),B(2,-4),在x軸上找一點(diǎn)C,使AC+BC最短,則點(diǎn)C的坐標(biāo)為( 。
A、(0,-
5
8
)
B、(-
4
3
,0)
C、(-4,0)
D、(
4
3
,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,已知點(diǎn)B(4,2),BA⊥x軸于A.
(1)畫出將△OAB繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后所得的△OA1B1
(2)并寫出點(diǎn)A1、B1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知點(diǎn)A(-3,4)和點(diǎn)B,若△AOB是等腰直角三角形,∠AOB=90°,則點(diǎn)B的坐標(biāo)是
(4,3)或(-4,-3)
(4,3)或(-4,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,已知點(diǎn)B(-3,3),點(diǎn)A(1,1),在x軸和y軸上確定點(diǎn)P,使△ABP為等腰三角形,則符合條件的點(diǎn)P的個(gè)數(shù)共有( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案