在梯形ABCD中,AD∥BC,對角線AC和BD交于點O,下列條件中,能判斷梯形ABCD是等腰梯形的是【   】
A.∠BDC =∠BCDB.∠ABC =∠DABC.∠ADB =∠DACD.∠AOB =∠BOC
C

試題分析:根據(jù)等腰梯形的判定,逐一作出判斷:

A.由∠BDC =∠BCD只能判斷△BCD是等腰三角形,而不能判斷梯形ABCD是等腰梯形;
B.由∠ABC =∠DAB和AD∥BC,可得∠ABC =∠DAB=900,是直角梯形,而不能判斷梯形ABCD是等腰梯形;
C.由∠ADB =∠DAC,可得AO=OD,由AD∥BC,可得∠ADB =∠DBC,∠DAC =∠ACB,從而得到∠DBC =∠ACB,所以O(shè)B=OC,因此AC=DB,根據(jù)對角線相等的梯形是等腰梯形可判定梯形ABCD是等腰梯形;
D.由∠AOB =∠BOC只能判斷梯形ABCD的對角線互相垂直,而不能判斷梯形ABCD是等腰梯形。
故選C。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD、BEFG均為正方形.

(1)如圖1,連接AG、CE,試判斷AG和CE的數(shù)量關(guān)系和位置關(guān)系并證明.
(2)將正方形BEFG繞點B順時針旋轉(zhuǎn)β角(0°<β<180°),如圖2,連接AG、CE相交于點M,連接MB,當(dāng)角β發(fā)生變化時,∠EMB的度數(shù)是否發(fā)生變化?若不變化,求出∠EMB的度數(shù);若發(fā)生變化,請說明理由.
(3)在(2)的條件下,過點A作AN⊥MB交MB的延長線于點N,請直接寫出線段CM與BN的數(shù)量關(guān)系      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

通過類比聯(lián)想、引申拓展研究典型題目,可達到解一題知一類的目的。下面是一個案例,請補充完整。

原題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由。
(1)思路梳理
∵AB=CD,
∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合。
∵∠ADC=∠B=90°,
∴∠FDG=180°,點F、D、G共線。
根據(jù)    ,易證△AFG≌    ,得EF=BE+DF。
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°,點E、F分別在邊BC、CD上,∠EAF=45°。若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系    時,仍有EF=BE+DF。
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠DAE=45°。猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,菱形ABCD中,,AB=4,則以AC為邊長的正方形ACEF的周長為【   】
A.14B.15C.16D.17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點,E、F分別是線段BM、CM的中點

(1)求證:△ABM≌△DCM
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;
(3)當(dāng)AD:AB=       _時,四邊形MENF是正方形(只寫結(jié)論,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,?ABCD中,點E、F分別在AD、BC上,且AE=CF.求證:BE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,∠ABC=90°,BD為AC的中線,過點C作CE⊥BD于點E,過點A作BD的平行線,交CE的延長線于點F,在AF的延長線上截取FG=BD,連接BG、DF.若AG=13,CF=6,則四邊形BDFG的周長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

對角線互相   的平行四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,梯形ABCD中,AD∥BC,AB∥DE,∠DEC=∠C,求證:梯形ABCD是等腰梯形.

查看答案和解析>>

同步練習(xí)冊答案