【題目】已知CA=CB,CD是經(jīng)過∠BCA頂點(diǎn)C的一條直線.E,F是直線CD上的兩點(diǎn),且∠BEC=∠CFA=α.
(1)若直線CD在∠BCA的內(nèi)部,且E,F在射線CD上,請解決下面兩個(gè)問題:
①如圖1,若∠BCA=90°,α=90°,則BE CF;EF |BE﹣AF|(填“>”,“<”或“=”);
②如圖2,若0°<∠BCA<180°,請?zhí)砑右粋(gè)關(guān)于α與∠BCA數(shù)量關(guān)系的條件 ,使①中的兩個(gè)結(jié)論仍然成立,補(bǔ)全圖形并證明.
(2)如圖3,若直線CD在∠BCA的外部,∠BCA=α,請用等式直接寫出EF,BE,AF三條線段的數(shù)量關(guān)系 .(不要求證明)
【答案】(1)①=,=;②α+∠BCA=180°,補(bǔ)全圖形和證明見解析;(2)EF=BE+AF
【解析】
(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根據(jù)AAS證△BCE≌△CAF,推出BE=CF,CE=AF即可;
②求出∠BEC=∠AFC,∠CBE=∠ACF,根據(jù)AAS證△BCE≌△CAF,推出BE=CF,CE=AF即可;
(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根據(jù)AAS證△BCE≌△CAF,推出BE=CF,CE=AF即可.
解:(1)①∵∠BCA=90°,∠α=90°,
∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,
∴∠CBE=∠ACF,
∵CA=CB,∠BEC=∠CFA,
∴△BCE≌△CAF(ASA),
∴BE=CF,EF=|CF﹣CE|=||BE﹣AF;
故答案為:=、=;
②α+∠BCA=180°,補(bǔ)全圖形如下:
在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣α,
∵∠BCA=180°﹣α,
∴∠BCA=∠CBE+∠BCE,
又∵∠ACF+∠BCE=∠BCA,
∴∠CBE=∠ACF,
又∵BC=CA,∠BEC=∠CFA,
∴△BCE≌△CAF(AAS),
∴BE=CF,CE=AF,
又∵EF=CE﹣CF,
∴EF=|BE﹣AF|;
故答案為:α+∠BCA=180°.
(2)EF=BE+AF,
如圖3,
∵∠BEC=∠CFA=α,α=∠BCA,∠BCA+∠BCE+∠ACF=180°,∠CFA+∠CAF+∠ACF=180°,
∴∠BCE=∠CAF.
又∵BC=CA,
∴△BCE≌△CAF(AAS),
∴BE=CF,EC=FA,
∴EF=EC+CF=BE+AF.
故答案為:EF=BE+AF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:、是銳角的兩條高,、分別是、的中點(diǎn),若EF=6,.
(1)證明:;
(2)判斷與的位置關(guān)系,并證明你的結(jié)論;
(3)求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸,軸的交點(diǎn)分別為,直線交軸于點(diǎn),兩條直線的交點(diǎn)為,點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸,交軸于點(diǎn),連接.
求的面積;
在線段上是否存在一點(diǎn),使四邊形為矩形,若存在,求出點(diǎn)坐標(biāo):若不存在,請說明理由;
若四邊形的面積為,設(shè)點(diǎn)的坐標(biāo)為,求出關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ,OC.以下五個(gè)結(jié)論:①△ACD≌△BCE;②△AOC≌△BQC ; ③△APC≌△BOC; ④△DPC≌△EQC;⑤ ∠AOB=60°.
其中正確的是( )
A. ①②③④⑤ B. ①④⑤ C. ①④D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC,AB=AC=24厘米,∠B=∠C,BC=16厘米,點(diǎn)D為AB的中點(diǎn).點(diǎn)P在線段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).若點(diǎn)Q的運(yùn)動(dòng)速度為v厘米/秒,則當(dāng)△BPD與△CQP全等時(shí),v的值為_____ 厘米/秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校有一塊長方形空地,它的長和寬的比是3:1,面積為363.
(1)求該長方形的長和寬;
(2)如圖所示,工人師傅要在這塊空地上設(shè)計(jì)一個(gè)圓形區(qū)域和四個(gè)扇形區(qū)域進(jìn)行綠化,其中四個(gè)扇形區(qū)域的半徑與中間圓形區(qū)域半徑相同,若綠化區(qū)域的總面積為,請你幫助工人師傅計(jì)算一下中間圓形區(qū)域的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長為半徑畫弧分別交AB,AC于點(diǎn)M和N,再分別以點(diǎn)M,N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長交BC于點(diǎn)D,則下列說法:①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的垂直平分線上;④S△DAC:S△ABC=1:3.其中正確的是__________________.(填所有正確說法的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣ax+b的圖象與反比例函數(shù)的圖象相交于點(diǎn)A(﹣4,﹣2),B(m,4),與y軸相交于點(diǎn)C.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)求點(diǎn)C的坐標(biāo)及△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(-4,),B(-1,2)是一次函數(shù)y=kx+b的圖像與反比例函數(shù)(m≠0,m<0)的函數(shù)圖像的兩個(gè)交點(diǎn),AC⊥x軸于點(diǎn)C,BD⊥y軸于點(diǎn)D
(1)根據(jù)函數(shù)圖像直接回答問題:在第二象限內(nèi),當(dāng)x取何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值?
(2)求一次函數(shù)的表達(dá)式及m的值;
(3)點(diǎn)P是線段AB上一點(diǎn),連接PC,PD,若△PCA和△PBD的面積相等,求點(diǎn)P的坐標(biāo)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com