如圖,拋物線y=x2-2x-3與x軸交于A、B兩點,與y軸交于點C.

(1)點A的坐標為          點B的坐標為         ,點C的坐標為        
(2)設拋物線y=x2-2x-3的頂點坐標為M,求四邊形ABMC的面積.

(1)(-1,0),(3,0),(0,-3);(2)9.

解析試題分析:(1)分別令x=0、y=0即可求出A、B、C的坐標;
(2)運用配方法求出頂點M的坐標,作出拋物線的對稱軸,交x軸于點D,則四邊形ABMC的面積=△AOC的面積+梯形OCMD的面積+△BDM的面積.
試題解析:(1)由y=0得x2-2x-3=0.
解得x1=-1,x2=3.
∴點A的坐標(-1,0),點B的坐標(3,0).
由x=0,得y=-3
∴點C的坐標(0,-3)
(2)如圖:作出拋物線的對稱軸,交x軸于點D,

由y=x2-2x-3=(x-1)2-4得
點M的坐標(1,-4)
四邊形ABMC的面積=△AOC的面積+梯形OCMD的面積+△BDM的面積.
=
=9.
考點: 二次函數(shù)圖象與性質(zhì).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

如圖,拋物線y=ax2-5ax+4經(jīng)過△ABC的三個頂點,已知BC∥x軸,點A在x軸上,點C在y軸上,且AC=BC.

(1)求拋物線的對稱軸;
(2)寫出A,B,C三點的坐標并求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某職業(yè)學校三名學生到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進價為8元/千克,下面是他們在活動結束后的對話。
A:如果以10元/千克的價格銷售,那么每天可售出300千克.
B:如果以13元/千克的價格銷售,那么每天可獲取利潤750元.
C:通過調(diào)查驗證,我發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數(shù)關系.
(1)求y(千克)與x(元)(x>0)的函數(shù)關系式;
(2)當銷售單價為何值時,該超市銷售這種水果每天獲取的利潤達到600元?【利潤=銷售量×(銷售單價-進價)】
(3)一段時間后,發(fā)現(xiàn)這種水果每天的銷售量均不低于225千克.則此時該超市銷售這種水果每天獲取的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某相宜本草護膚品專柜計劃在春節(jié)前夕促銷甲、乙兩款護膚品,根據(jù)市場調(diào)研,發(fā)現(xiàn)如下兩種信息:
信息一:銷售甲款護膚品所獲利潤y(元)與銷售量x(件)之間存在二次函數(shù)關系y=ax2+bx.在x=10時,y=140;當x=30時,y=360.
信息二:銷售乙款護膚品所獲利潤y(元)與銷售量x(件)之間存在正比例函數(shù)關系y=3x.請根據(jù)以上信息,解答下列問題;
(1)求信息一中二次函數(shù)的表達式;
(2)該相宜本草護膚品專柜計劃在春節(jié)前夕促銷甲、乙兩款護膚品共100件,請設計一個營銷方案,使銷售甲、乙兩款護膚品獲得的利潤之和最大,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知二次函數(shù)y=ax2-4x+c的圖象過點(-1,0)和點(2,-9).
(1)求該二次函數(shù)的解析式并寫出其對稱軸;
(2)已知點P(2,-2),連結OP,在x軸上找一點M,使△OPM是等腰三角形,請直接寫出點M的坐標(不寫求解過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知拋物線經(jīng)過點(3,0),(-1,0).
(1)求拋物線的解析式;
(2)求拋物線的頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在二次函數(shù)中,函數(shù)y與自變量x的部分對應值如下表:

x

-1
0
1
2
3

y

8
3
0
-1
0

(1)求這個二次函數(shù)的表達式;
(2)當x的取值范圍滿足什么條件時,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖所示,在平面直角坐標系xoy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線經(jīng)過點A、B和D(4,).

(1)求拋物線的表達式.
(2)如果點P由點A出發(fā)沿AB邊以2cm/s的速度向點B運動,同時點Q由點B出發(fā),沿BC邊以1cm/s的速度向點C運動,當其中一點到達終點時,另一點也隨之停止運動.設S=PQ2(cm2).
①試求出S與運動時間t之間的函數(shù)關系式,并寫出t的取值范圍;
②當S取時,在拋物線上是否存在點R,使得以點P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標;如果不存在,請說明理由.
(3)在拋物線的對稱軸上求點M,使得M到D、A的距離之差最大,求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖①,在Rt△ACB中,∠C=90º,AC=6cm,BC=8cm,點P由B出發(fā)沿BC方向向點C勻速運動,速度為2cm/s;點Q由A出發(fā)沿AB方向向點B勻速運動,速度為1cm/s;連接PQ.若設運動的時間為t(s)(0<t<4),解答下列問題:

(1)當t為何值時,PQ的垂直平分線經(jīng)過點B?
(2)如圖②,連接CQ.設△PQC的面積為y(cm2),求y與t之間的函數(shù)關系式;

(3)如圖②,是否存在某一時刻t,使線段C Q恰好把四邊形ACPQ的面積分成1:2的兩部分?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案