【題目】(1)如圖1,AC=AE,∠1=∠2,∠C=∠E.求證:BC=DE.
(2)如圖2,在△ABC中,AB=AC,D為BC中點,∠BAD=30°,求∠C的度數(shù).
【答案】(1)見解析,(2)60°.
【解析】
試題(1)要證BC=DE,根據(jù)全等三角形的性質只要△CAB≌△EAD即可,而要證全等已有-邊和一角對應相等,由∠1=∠2可推出另一角對應相等,根據(jù)ASA得證.
(2)根據(jù)線段中點的性質和角平分線的性質,證得△ABC是等邊三角形,從而得證.
試題解析:(1)證明:∵∠1=∠2,
∴∠BAC=∠DAE,
在△ABC和△ADE中,
∠BAC=∠DAC,AC=AE,∠C=∠E,
∴△ABC≌△ADE,
∴BC=DE;
(2)解:∵D為BC中點,
∴BD=CD,
∵AB=AC,
∴AD平分∠BAC,
∴∠BAD=∠CAD=30°,
∴∠BAC=60°,
∴△ABC為等邊三角形,
∴∠C=60°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當∠A=40°時,求∠DEF的度數(shù);
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=-3x與雙曲線y=在第四象限內的部分相交于點A(a,-6),將這條直線向
上平移后與該雙曲線交于點M,且△AOM的面積為3.
(1)求k的值;
(2)求平移后得到的直線的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,頂點A,C分別在坐標軸上,頂點B的坐標(4,2),過點D(0,3)和E(6,0)的直線分別于AB,BC交于點M,N.
(1)求直線DE的解析式和點M的坐標;
(2)若反比例函數(shù)y= (x>0)的圖象經(jīng)過點M,求該反比函數(shù)的解析式,并通過計算判斷點N是否在該函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD,BE.以下四個結論:
①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中結論正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司在羊年春節(jié)晚會上舉行一個游戲,規(guī)則如下:有4張背面相同的卡片,正面分別是喜羊羊、美羊羊、慢羊羊、懶羊羊的頭像,分別對應1000元、600元、400元、200元的獎金,現(xiàn)將4張紙牌洗勻后背面朝上擺放到桌上,讓員工抽取,每人有兩次抽獎機會,兩次抽取的獎金之和作為公司發(fā)的年終獎金.現(xiàn)有兩種抽取的方案:①小芳抽取方案是:直接從四張牌中抽取兩張.②小明抽取的方案是:先從四張牌中抽取一張后放回去,再從四張中再抽取一張.你認為是小明抽到的獎金不少于1000元的概率大還是小芳抽取到的獎金不少于1000元的概率大?請用樹形圖或列表法進行分析說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( ).
A.BD=DC, AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,△ABC中,AB=AC,∠BAC=90°,點D是直線AB上的一動點(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點D在邊AB上時,試探究線段BD、AB和AF的數(shù)量關系,并證明你的結論;
(2)點D在AB的延長線或反向延長線上時,(1)中的結論是否成立?若不成立,請直接寫出正確結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在△ABC中,∠BAC=90°,過點C的直線EF∥AB,D是BC上一點,連接AD,過點D分別作GD⊥AD,HD⊥BC,交EF和AC于點G,H,連接AG.
(1)當∠ACB=30°時,如圖1所示.
①求證:△GCD∽△AHD;
②試判斷AD與DG之間的數(shù)量關系,并說明理由;
(2)當tan∠ACB= 時,如圖2所示,請你直接寫出AD與DG之間的數(shù)量關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com