【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD和正方形DEFG的邊長(zhǎng)分別為2a,2b,點(diǎn)A,D,G在y軸上,坐標(biāo)原點(diǎn)O為AD的中點(diǎn),拋物線y=mx2過C,F(xiàn)兩點(diǎn),連接FD并延長(zhǎng)交拋物線于點(diǎn)M.
(1)若a=1,求m和b的值;
(2)求的值;
(3)判斷以FM為直徑的圓與AB所在直線的位置關(guān)系,并說明理由.
【答案】(1)m=,b=1+;(2)=1+;(3)見解析.
【解析】(1)由a=1,根據(jù)正方形的性質(zhì)及已知條件得出C(2,1).將C點(diǎn)坐標(biāo)代入y=mx2,求出m=,則拋物線解析式為y=x2,再將F(2b,2b+1)代入y=x2,即可求出b的值;
(2)由正方形ABCD的邊長(zhǎng)為2a,坐標(biāo)原點(diǎn)O為AD的中點(diǎn),得出C(2a,a).將C點(diǎn)坐標(biāo)代入y=mx2,求出m=,則拋物線解析式為y=x2,再將F(2b,2b+a)代入y=x2,整理得出方程b2﹣2ab﹣a2=0,把a(bǔ)看作常數(shù),利用求根公式得出b=(1±)a(負(fù)值舍去),那么=1+;
(3)先利用待定系數(shù)法求出直線FD的解析式為y=x+a.再求出M點(diǎn)坐標(biāo)為(2a﹣2a,3a﹣2a).又F(2a+2a,3a+2a),利用中點(diǎn)坐標(biāo)公式得到以FM為直徑的圓的圓心O′的坐標(biāo)為(2a,3a),再求出O′到直線AB(y=﹣a)的距離d的值,以FM為直徑的圓的半徑r的值,由d=r,根據(jù)直線與圓的位置關(guān)系可得以FM為直徑的圓與AB所在直線相切.
解:(1)∵a=1,
∴正方形ABCD的邊長(zhǎng)為2,
∵坐標(biāo)原點(diǎn)O為AD的中點(diǎn),
∴C(2,1).
∵拋物線y=mx2過C點(diǎn),∴1=4m,解得m=,
∴拋物線解析式為y=x2,
將F(2b,2b+1)代入y=x2,
得2b+1=×(2b)2,b=1±(負(fù)值舍去).
故m=,b=1+;
(2)∵正方形ABCD的邊長(zhǎng)為2a,坐標(biāo)原點(diǎn)O為AD的中點(diǎn),
∴C(2a,a).
∵拋物線y=mx2過C點(diǎn),∴a=m4a2,解得m=,
∴拋物線解析式為y=x2,
將F(2b,2b+a)代入y=x2,
得2b+a=×(2b)2,
整理得b2﹣2ab﹣a2=0,解得b=(1±)a(負(fù)值舍去),
∴=1+;
(3)以FM為直徑的圓與AB所在直線相切.
理由如下:∵D(0,a),
∴可設(shè)直線FD的解析式為y=kx+a,
∵F(2b,2b+a),∴2b+a=k2b+a,解得k=1,
∴直線FD的解析式為y=x+a.
將y=x+a代入y=x2,
得x+a=x2,解得x=2a±2a(正值舍去),
∴M點(diǎn)坐標(biāo)為(2a﹣2a,3a﹣2a).
∵F(2b,2b+a),b=(1+)a,∴F(2a+2a,3a+2a),
∴以FM為直徑的圓的圓心O′的坐標(biāo)為(2a,3a),
∴O′到直線AB(y=﹣a)的距離d=3a﹣(﹣a)=4a,
∵以FM為直徑的圓的半徑r=O′F==4a,
∴d=r,
∴以FM為直徑的圓與AB所在直線相切.
“點(diǎn)睛”本題是二次函數(shù)的綜合題型,其中涉及到正方形的性質(zhì),待定系數(shù)法求二次函數(shù)、一次函數(shù)的解析式,一元二次方程的求根公式,直線與拋物線交點(diǎn)坐標(biāo)的求法,直線與圓的位置關(guān)系.綜合性較強(qiáng),難度適中.正確求出拋物線的解析式是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在本學(xué)期某次考試中,某校初二(1)、初二(2)兩班學(xué)生數(shù)學(xué)成績(jī)統(tǒng)計(jì)如下表:、
分?jǐn)?shù) | 50 | 60 | 70 | 80 | 90 | 100 | |
人 | 二(1)班 | 3 | 5 | 16 | 3 | 11 | 12 |
二(2)班 | 2 | 5 | 11 | 12 | 13 | 7 |
請(qǐng)根據(jù)表格提供的信息回答下列問題:
(1)二(1)班平均成績(jī)?yōu)?/span>分,二(2)班平均成績(jī)?yōu)?/span>分,從平均成績(jī)看兩個(gè)班成績(jī)優(yōu)次?
(2)二(1)班眾數(shù)為分,二(2)班眾數(shù)為分.從眾數(shù)看兩個(gè)班的成績(jī)誰優(yōu)誰次? .
(3)已知二(1)班的方差大于二(2)班的方差,那么說明什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場(chǎng)調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價(jià)與銷量的相關(guān)信息如下表:
時(shí)間x(天) | 1≤x<50 | 50≤x≤90 |
售價(jià)(元/件) | x+40 | 90 |
每天銷量(件) | 200-2x |
已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品每天的利潤(rùn)為y元。
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時(shí),當(dāng)天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
(3)該商品在銷售過程中,共有多少天每天的銷售利潤(rùn)不低于4800元?請(qǐng)直接寫出結(jié)果。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為4,E是CD上一點(diǎn),且 ,將△BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得△DCF.
(1)求CF的長(zhǎng);
(2)求DF的長(zhǎng);
(3)延長(zhǎng)BE交DF于G點(diǎn),試判斷直線BG與DF的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大源村在“山上再造一個(gè)通城”工作中,計(jì)劃植樹200畝,全村在完成植樹40畝后,黨的群眾路線教育實(shí)踐活動(dòng)工作小組加入村民植樹活動(dòng),并且該活動(dòng)小組植樹的速度是全村植樹速度的1.5倍,整個(gè)植樹過程共用了13天完成.
(1)全村每天植樹多少畝?
(2)如果全村植樹每天需2000元工錢,黨的群眾路線教育實(shí)踐活動(dòng)工作小組是義務(wù)植樹,因此實(shí)際工錢比計(jì)劃節(jié)約多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】命題“平行于同一條直線的兩直線平行”的題設(shè)是__________________________,結(jié)論是_______,它是一個(gè)______命題(填“真”或“假”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題12分)已知拋物線交x軸于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),頂點(diǎn)為C.
(1)求證:不論a為何實(shí)數(shù)值,頂點(diǎn)C總在同一條直線上;
(2)若,求此時(shí)拋物線的解析式;
(3)在(2)的條件下,將拋物線沿y軸負(fù)方向平移2個(gè)單位得到拋物線,直線
交拋物線于E、F兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),交拋物線的對(duì)稱軸于點(diǎn)N, ,若MN=ME,求的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com