如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于點C,AC平分∠DAB.
(1)求證:AD⊥DC;
(2)若AD=2,AC=,求AB的長.
(1)略 。2)2.5
【解析】(1)連接OC,根據(jù)切線的性質(zhì)得到OC與CD垂直,進而得到∠OCA+∠DCA=90°,由AC為角平分線,根據(jù)角平分線定義得到兩個角相等,又OA=OC,根據(jù)等邊對等角得到又得到另兩個角相等,等量代換后得到∠DAC=∠OCA,根據(jù)等角的余角相等得到∠DCA+∠DAC=90°,從而得到∠ADC為直角,得證;
(2)連接CB,由AB為圓O的直徑,根據(jù)直徑所對的圓周角為直角得到∠ACB與∠ADC相等都為直角,又根據(jù)AC為角平分線得到一對角相等,由兩對對應(yīng)角相等的兩三角形相似,得到三角形ADC與三角形ABC相似,由相似得比例列出關(guān)系式,把AC和AD的長即可求出AB的長.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
BE | AD |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com