│a│+5的最小的值是________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)用如圖所示的曲尺形框框(有三個(gè)方向),可以套住下表中的三個(gè)數(shù),設(shè)被框住的三個(gè)數(shù)中(第一個(gè)框框住的最小的數(shù)為a、第二個(gè)框框住的最小的數(shù)為b、第三個(gè)框框住的最小的數(shù)為c).
(1)第一個(gè)框框住的三個(gè)數(shù)中最小的數(shù)為a,三個(gè)數(shù)的和是:
 
,
第二個(gè)框框住的三個(gè)數(shù)中最小的數(shù)為b,三個(gè)數(shù)的和是:
 
,
第三個(gè)框框住的三個(gè)數(shù)中最小的數(shù)為c,三個(gè)數(shù)的和是:
 
;
(2)這三個(gè)框框住的數(shù)的和能是48嗎?能求出最小的數(shù)a、b、c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖是某市民健身廣場(chǎng)的平面示意圖,它是由6個(gè)正方形拼成的長(zhǎng)方形,已知中間最小的正方形A的邊長(zhǎng)是1米,
(1)若設(shè)圖中最大正方形B的邊長(zhǎng)是x米,請(qǐng)用含x的代數(shù)式分別表示出正方形F、E和C的邊長(zhǎng);
(2)觀察圖形的特點(diǎn)可知,長(zhǎng)方形相對(duì)的兩邊是相等的(如圖中的MN和PQ).請(qǐng)根據(jù)這個(gè)等量關(guān)系,求出x的值;
(3)現(xiàn)沿著長(zhǎng)方形廣場(chǎng)的四條邊鋪設(shè)下水管道,由甲、乙2個(gè)工程隊(duì)單獨(dú)鋪設(shè)分別需要10天、15天完成.如果兩隊(duì)從同一點(diǎn)開(kāi)始,沿相反的方向同時(shí)施工2天后,因甲隊(duì)另精英家教網(wǎng)有任務(wù),余下的工程由乙隊(duì)單獨(dú)施工,試問(wèn)還要多少天完成?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2012•十堰)閱讀材料:
例:說(shuō)明代數(shù)式
x2+1
+
(x-3)2+4
的幾何意義,并求它的最小值.
解:
x2+1
+
(x-3)2+4
=
(x-0)2+12
+
(x-3)2+22
,如圖,建立平面直角坐標(biāo)系,點(diǎn)P(x,0)是x軸上一點(diǎn),則
(x-0)2+12
可以看成點(diǎn)P與點(diǎn)A(0,1)的距離,
(x-3)2+22
可以看成點(diǎn)P與點(diǎn)B(3,2)的距離,所以原代數(shù)式的值可以看成線段PA與PB長(zhǎng)度之和,它的最小值就是PA+PB的最小值.
設(shè)點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A′,則PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而點(diǎn)A′、B間的直線段距離最短,所以PA′+PB的最小值為線段A′B的長(zhǎng)度.為此,構(gòu)造直角三角形A′CB,因?yàn)锳′C=3,CB=3,所以A′B=3
2
,即原式的最小值為3
2

根據(jù)以上閱讀材料,解答下列問(wèn)題:
(1)代數(shù)式
(x-1)2+1
+
(x-2)2+9
的值可以看成平面直角坐標(biāo)系中點(diǎn)P(x,0)與點(diǎn)A(1,1)、點(diǎn)B
(2,3)
(2,3)
的距離之和.(填寫點(diǎn)B的坐標(biāo))
(2)代數(shù)式
x2+49
+
x2-12x+37
的最小值為
10
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2012•李滄區(qū)一模)【問(wèn)題引入】
幾個(gè)人拎著水桶在一個(gè)水龍頭前面排隊(duì)打水,水桶有大有。麄?cè)撛鯓优抨?duì)才能使得總的排隊(duì)時(shí)間最短?
假設(shè)只有兩個(gè)人時(shí),設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎著小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者前面,容易求出出兩人接滿水等候(T+2t)分鐘.可見(jiàn),要使總的排隊(duì)時(shí)間最短,拎小桶者應(yīng)排在拎大桶者前面.這樣,我們可以猜測(cè),幾個(gè)人拎著水桶在一個(gè)水龍頭前面排隊(duì)打水,要使總的排隊(duì)時(shí)間最短,需將他們按水桶從小到大排隊(duì).
規(guī)律總結(jié):
事實(shí)上,只要不按從小到大的順序排隊(duì),就至少有緊挨著的兩個(gè)人拎著大桶者排在拎小桶者之前,仍設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘,并設(shè)拎大桶者開(kāi)始接水時(shí)已等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者一共等候了(m+T+t)分鐘,兩人一共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個(gè)人交還位置,即局部調(diào)整這兩個(gè)人的位置,同樣介意計(jì)算兩個(gè)人接滿水共等候了
2m+2t+T
2m+2t+T
分鐘,共節(jié)省了
T-t
T-t
分鐘,而其他人等候的時(shí)間未變,這說(shuō)明只要存在有緊挨著的兩個(gè)人是拎大桶者在拎小桶者之前都可以這樣調(diào)整,從而使得總等候時(shí)間減少.這樣經(jīng)過(guò)一系列調(diào)整后,整個(gè)隊(duì)伍都是從小打到排列,就打到最優(yōu)狀態(tài),總的排隊(duì)時(shí)間就最短.
【方法探究】
一般的,對(duì)某些設(shè)計(jì)多個(gè)可變對(duì)象的數(shù)學(xué)問(wèn)題,先對(duì)其少數(shù)對(duì)象進(jìn)行調(diào)整,其他對(duì)象暫時(shí)保持不變,從而化難為易,取得問(wèn)題的局部解決.經(jīng)過(guò)若干次這種局部的調(diào)整,不斷縮小范圍,逐步逼近目標(biāo),最終使問(wèn)題得到解決,這種數(shù)學(xué)思想就叫做局部調(diào)整法.
【實(shí)踐應(yīng)用1】
如圖1在銳角△ABC中,AB=4
2
,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,M、N分別是AD和AB上的動(dòng)點(diǎn),則BM+MN的最小值是多少?
解析:
(1)先假定N為定點(diǎn),調(diào)整M到合適的位置使BM+MN有最小值(相對(duì)的),容易想到,在AC上作AN′=AN(即作點(diǎn)N關(guān)于AD的對(duì)稱點(diǎn)N'),連接BN′交AD于M,則M點(diǎn)是使BM+MN有相對(duì)最小值的點(diǎn).(如圖2,M點(diǎn)是確定方法找到的)
(2)在考慮點(diǎn)N的位置,使BM+MN最終達(dá)到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使
BM+MN′=BN′
BM+MN′=BN′
,此時(shí)BM+MN的最小值是
4
4

【實(shí)踐應(yīng)用2】
如圖3,把邊長(zhǎng)是3的正方形等分成9個(gè)小正方形,在有陰影的小正方形內(nèi)(包括邊界)分別取點(diǎn)P、R,于已知格點(diǎn)Q(每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn))構(gòu)成三角形,則△PQR的最大面積是
2
2
,請(qǐng)?jiān)趫D4中畫出面積最大時(shí)的△PQR的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:b是最小的正整數(shù),且a、b滿足(c-5)2+|a+b|=0,請(qǐng)回答問(wèn)題
(1)請(qǐng)直接寫出a、b、c的值.a(chǎn)=
-1
-1
,b=
1
1
,c=
5
5

(2)a、b、c所對(duì)應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)P為易動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x,點(diǎn)P在0到2之間運(yùn)動(dòng)時(shí)(即0≤x≤2時(shí)),請(qǐng)化簡(jiǎn)式子:|x+1|-|x-1|+2|x+5|(請(qǐng)寫出化簡(jiǎn)過(guò)程)

(3)在(1)(2)的條件下,點(diǎn)A、B、C開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB.請(qǐng)問(wèn):BC-AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.

查看答案和解析>>

同步練習(xí)冊(cè)答案